Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources


Book Description

The discrete sources method is an efficient and powerful tool for solving a large class of boundary-value problems in scattering theory. A variety of numerical methods for discrete sources now exist. In this book, the authors unify these formulations in the context of the so-called discrete sources method. Comprehensive presentation of the discrete sources method Original theory - an extension of the conventional null-field method using discrete sources Practical examples that demonstrate the efficiency and flexibility of elaborated methods (scattering by particles with high aspect ratio, rough particles, nonaxisymmetric particles, multiple scattering) List of discrete sources programmes available via the Internet




Inverse Acoustic and Electromagnetic Scattering Theory


Book Description

The inverse scattering problem is central to many areas of science and technology such as radar and sonar, medical imaging, geophysical exploration and nondestructive testing. This book is devoted to the mathematical and numerical analysis of the inverse scattering problem for acoustic and electromagnetic waves. In this third edition, new sections have been added on the linear sampling and factorization methods for solving the inverse scattering problem as well as expanded treatments of iteration methods and uniqueness theorems for the inverse obstacle problem. These additions have in turn required an expanded presentation of both transmission eigenvalues and boundary integral equations in Sobolev spaces. As in the previous editions, emphasis has been given to simplicity over generality thus providing the reader with an accessible introduction to the field of inverse scattering theory. Review of earlier editions: “Colton and Kress have written a scholarly, state of the art account of their view of direct and inverse scattering. The book is a pleasure to read as a graduate text or to dip into at leisure. It suggests a number of open problems and will be a source of inspiration for many years to come.” SIAM Review, September 1994 “This book should be on the desk of any researcher, any student, any teacher interested in scattering theory.” Mathematical Intelligencer, June 1994




Electromagnetic And Acoustic Scattering: Detection And Inverse Problems - Proceedings Of The Conference


Book Description

Contents:Light Scattering Problems in Astrophysics (J M Perrin)Surface Integral Operators and their Use in Acoustics and Electromagnetics (A Berthon)Acoustic Diffraction by Slender Bodies of Arbitrary Shape (M Tran-Van-Nhieu)High and Low Energy Approximations for the Electromagnetic Scattering by Irregular Objects (B Torresani)Electromagnetic Scattering and Mutual Interactions Between Closely Spaced Spheroids (J Dalmas & R Deleuil)Acoustical Imaging of 2D Fluid Targets Buried in a Half Space: A Diffraction Tomography Approach Using Line-Sources Insonification (B Duchene et al)Contribution of Radar Polarimetry in Radar Target Discrimination. The “Poincaré Planisphere”: a New Representation Method (E Pottier)Electromagnetic and Acoustic Waves in Random Media: from Propagation to Anderson Localization (B Souillard)Weak Disorder: Homogeneisation Method and Propagation (C Bardos)Coherent Propagation of Surface Acoustic Waves in Quasi-Periodic and Random Arrays of Grooves (D Sornette et al)On Asymptotic Behaviour of Waves States in Random Media (F Bentosela & R Rodriguez)A Study of Acoustic Transmission of Transient Signal in a Inhomogeneous Medium with the Help of a Wavelet Transform. Application to an Air-Water Plane Interface (G Saracco & Ph Tchamitchian)Three-Dimensional Impedance Scattering Theory (P Sabatier)Survey of Optimization Algorithms Applied to Inverse Problems (A Roger)A Linearized Inverse Problem: Acoustic Impedance Tomography of Biological Media (J P Lefebvre)and others Readership: Electrical engineers and mathematicians.




Electromagnetic Wave Scattering on Nonspherical Particles


Book Description

This book gives a detailed overview of the theory of electromagnetic wave scattering on single, homogeneous, but nonspherical particles. Beside the systematically developed Green’s function formalism of the first edition this second and enlarged edition contains additional material regarding group theoretical considerations for nonspherical particles with boundary symmetries, an iterative T-matrix scheme for approximate solutions, and two additional but basic applications. Moreover, to demonstrate the advantages of the group theoretical approach and the iterative solution technique, the restriction to axisymmetric scatterers of the first edition was abandoned.




Analytical and Computational Methods in Scattering and Applied Mathematics


Book Description

Professor Ralph Kleinman was director of the Center for the Mathematics of Waves and held the UNIDEL Professorship of the University of Delaware. Before his death in 1998, he made major scientific contributions in the areas of electromagnetic scattering, wave propagation, and inverse problems. He was instrumental in bringing together the mathematic




Electromagnetic Scattering by Particles and Particle Groups


Book Description

This self-contained and accessible book provides a thorough introduction to the basic physical and mathematical principles required in studying the scattering and absorption of light and other electromagnetic radiation by particles and particle groups. For the first time the theories of electromagnetic scattering, radiative transfer, and weak localization are combined into a unified, consistent branch of physical optics directly based on the Maxwell equations. A particular focus is given to key aspects such as time and ensemble averaging at different scales, ergodicity, and the physical nature of measurements afforded by actual photopolarimeters. Featuring over 120 end-of-chapter exercises, with hints and solutions provided, this clear, one-stop resource is ideal for self-study or classroom use, and will be invaluable to both graduate students and researchers in remote sensing, physical and biomedical optics, optical communications, optical particle characterization, atmospheric physics and astrophysics.







Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations


Book Description

A guide to wave-field computational methods based on contrast source type of integral equations Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations presents a text that examines wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods. Written by a noted expert on the topic, the book provides a guide to efficient methods for calculating wave fields in a known inhomogeneous medium. The author provides a link between the fundamental scattering theory and its discrete counterpart and discusses the forward scattering problem based on the contrast-source integral equations. The book fully describes the calculation of wave fields inside and outside a scattering object with general shape and material property and reviews the inverse scattering problem, in which material properties are resolved from wave-field measurements outside the scattering object. The theoretical approach is the inverse of the forward scattering problem that determines how radiation is scattered, based on the scattering object. This important book: Provides a guide to the effects of scalar waves, acoustic waves and electromagnetic waves Describes computer modeling in 1D, 2D and 3D models Includes an online site for computer codes with adjustable configurations Written for students, researchers, and professionals, Forward and Inverse Scattering Algorithms Based on Contrast Source Integral Equations offers a guide to wave-field computational methods based on contrast source type of integral equations and the computational implementation in wave-field based imaging methods.




Electromagnetic and Acoustic Scattering by Simple Shapes


Book Description

The book represents an exhaustive study of the scattering properties of acoustically soft and hard bodies and of perfect conductors, presented for 15 geometrically-simple shapes. Such shapes are important in their own right and as a basis for synthesizing the radiation and scattering properties of more complex configurations. Each shape is treated in a separate chapter whose contents are presented in stylized format for easy reference. Emphasis is placed on results in the form of formulae and diagrams. Although no detailed derivation are included, an outline of methods in scattering theory is given in the Introduction. (Author).




Light Scattering by Systems of Particles


Book Description

This book develops the theory of the null-field method (also called T-matrix method), covering almost all aspects and current applications. This book also incorporates FORTRAN programs and simulation results. Worked examples of the application of the FORTRAN programs show readers how to adapt or modify the programs for their specific application.