Book Description
In this work, the possibilities of an acoustic field analysis in small microphone arrays are investigated. With the increased use of mobile communication devices, such as smartphones and hearing aids, and the increase in the number of microphones in such devices, multi-channel signal processing has gained popularity. Apart from the definite signal processing, this thesis evaluates what information on the acoustic sound field and environment can be gained from the signal of such small microphone arrays. For this purpose, an innovative sound field classification was developed that determines the energies of the single sound field components. The method is based on spatial coherences of two or more acoustical. The method was successfully verified with a set of simulated and measured input signals. An adaptive automatic sensor mismatch compensation was created, which proved able to fully compensate any slow sensor drift after an initial training. Further, a new method for the blind estimation of the reverberation time based on the dependency of the coherence estimate on the evaluation parameters was proposed. The method determines the reverberation time of a room from the spatial coherence between two or more acoustic sensors.