Atmospheric Acoustic Remote Sensing


Book Description

Sonic Detection and Ranging (SODAR) systems and Radio Acoustic Sounding Systems (RASS) use sound waves to determine wind speed, wind direction, and turbulent character of the atmosphere. They are increasingly used for environmental and scientific applications such as analyzing ground-level pollution dispersion and monitoring conditions affecting wind energy generation. However, until now there have been no reliable references on SODAR and RASS for practitioners in the field as well as non-experts who wish to understand and implement this technology to their own applications. Authored by an internationally known expert in the design and use of SODAR/RASS technology, Atmospheric Acoustic Remote Sensing: Principles and Applications systematically explains the underlying science, principles, and operational aspects of acoustic radars. Abundant diagrams and figures, including eight pages of full-color images, enhance clear guidelines and tools for handling calibration, error, equipment, hardware, sampling, and data analysis. The final chapter explores applications in environmental research, boundary layer research, wind power and loading, complex terrain, and sound speed profiles. Atmospheric Acoustic Remote Sensing offers SODAR and RASS users as well as general remote sensing practitioners, environmental scientists, and engineers a straightforward guide for using SODARs to perform wind measurements and data analysis for scientific, environmental, or alternative monitoring applications.




Acoustic Remote Sensing Applications


Book Description

This book, which is divided into three parts, gives a state-of-the-art report on technical developments in instrumentation and on theoretical advancements in acoustic remote sensing. It explains the utilization of acoustic techniques in studies related to the structure of the lower atmosphere and oceans and discusses various atmospheric and oceanic applications. The potential and limitations of acoustic remote sensing are also described. This book will be useful to researchers, graduate students, and teachers interested in the structure of the atmosphere and oceans.










Underwater Acoustic Signal Processing


Book Description

This book provides comprehensive coverage of the detection and processing of signals in underwater acoustics. Background material on active and passive sonar systems, underwater acoustics, and statistical signal processing makes the book a self-contained and valuable resource for graduate students, researchers, and active practitioners alike. Signal detection topics span a range of common signal types including signals of known form such as active sonar or communications signals; signals of unknown form, including passive sonar and narrowband signals; and transient signals such as marine mammal vocalizations. This text, along with its companion volume on beamforming, provides a thorough treatment of underwater acoustic signal processing that speaks to its author’s broad experience in the field.




Environmental Applications of Remote Sensing


Book Description

Nowadays, the innovation in space technologies creates a new trend for the Earth observation and monitoring from space. This book contains high quality and compressive work on both microwave and optical remote sensing applications. This book is divided into five sections: (i) remote sensing for biomass estimation, (ii) remote sensing-based glacier studies, (iii) remote sensing for coastal and ocean applications, (iv) sewage leaks and environment disasters, and (v) remote sensing image processing. Each chapter offers an opportunity to expand the knowledge about various remote sensing techniques and persuade researchers to deliver new research novelty for environment studies.




Acoustic Wave Sensors


Book Description

Written by an interdisciplinary group of experts from both industry and academia, Acoustic Wave Sensors provides an in-depth look at the current state of acoustic wave devices and the scope of their use in chemical, biochemical, and physical measurements, as well as in engineering applications. Because of the inherent interdisciplinary applications of these devices, this book will be useful for the chemist and biochemist interested in the use and development ofthese sensors for specific applications; the electrical engineer involved in the design and improvement of these devices; the chemical engineer and the biotechnologist interested in using these devices for process monitoring and control; and the sensor community at large. - Provides in-depth comparison and analyses of different types of acoustic wave devices - Discusses operating principles and design considerations - Includes table of relevant material constants for quick reference - Presents an extensive review of current uses of these devices for chemical, biochemical, and physical measurements, and engineering applications




Coral Reef Remote Sensing


Book Description

Remote sensing stands as the defining technology in our ability to monitor coral reefs, as well as their biophysical properties and associated processes, at regional to global scales. With overwhelming evidence that much of Earth’s reefs are in decline, our need for large-scale, repeatable assessments of reefs has never been so great. Fortunately, the last two decades have seen a rapid expansion in the ability for remote sensing to map and monitor the coral reef ecosystem, its overlying water column, and surrounding environment. Remote sensing is now a fundamental tool for the mapping, monitoring and management of coral reef ecosystems. Remote sensing offers repeatable, quantitative assessments of habitat and environmental characteristics over spatially extensive areas. As the multi-disciplinary field of coral reef remote sensing continues to mature, results demonstrate that the techniques and capabilities continue to improve. New developments allow reef assessments and mapping to be performed with higher accuracy, across greater spatial areas, and with greater temporal frequency. The increased level of information that remote sensing now makes available also allows more complex scientific questions to be addressed. As defined for this book, remote sensing includes the vast array of geospatial data collected from land, water, ship, airborne and satellite platforms. The book is organized by technology, including: visible and infrared sensing using photographic, multispectral and hyperspectral instruments; active sensing using light detection and ranging (LiDAR); acoustic sensing using ship, autonomous underwater vehicle (AUV) and in-water platforms; and thermal and radar instruments. Emphasis and Audience This book serves multiple roles. It offers an overview of the current state-of-the-art technologies for reef mapping, provides detailed technical information for coral reef remote sensing specialists, imparts insight on the scientific questions that can be tackled using this technology, and also includes a foundation for those new to reef remote sensing. The individual sections of the book include introductory overviews of four main types of remotely sensed data used to study coral reefs, followed by specific examples demonstrating practical applications of the different technologies being discussed. Guidelines for selecting the most appropriate sensor for particular applications are provided, including an overview of how to utilize remote sensing data as an effective tool in science and management. The text is richly illustrated with examples of each sensing technology applied to a range of scientific, monitoring and management questions in reefs around the world. As such, the book is broadly accessible to a general audience, as well as students, managers, remote sensing specialists and anyone else working with coral reef ecosystems.







Atmospheric Acoustics


Book Description

This book concisely expounds the fundamental concepts, phenomena, theories and procedures in a complete and systematic sense. In this book, not only almost all the important achievements from predecessors but also the contributions from the author himself have been summed up profoundly. Starting from the derivation of fundamental equations, various classical acoustical phenomena such as reflection, refraction, scattering diffraction and absorption in atmosphere, as well as the influences of gravitation and rotation of the earth on the behaviors of different atmospheric waves including acoustic waves, have been discussed in viewpoints of wave acoustics and geometrical acoustics respectively. The recent developments of several computation methods in the field of atmospheric acoustics have been introduced in some detail. As for the application aspects, atmospheric remote sensing has been discussed from the angle of inverse problems.