Acoustics of Fluid-Structure Interactions


Book Description

A reference for analytical methods for modelling acoustic problems, a repository of known results and methods in the theory of aerodynamic sound, and a graduate-level textbook.




Acoustics of Fluid-Structure Interactions


Book Description

Acoustics of Fluid-Structure Interactions addresses an increasingly important branch of fluid mechanics--the absorption of noise and vibration by fluid flow. This subject, which offers numerous challenges to conventional areas of acoustics, is of growing concern in places where the environment is adversely affected by sound. Howe presents useful background material on fluid mechanics and the elementary concepts of classical acoustics and structural vibrations. Using examples, many of which include complete worked solutions, he vividly illustrates the theoretical concepts involved. He provides the basis for all calculations necessary for the determination of sound generation by aircraft, ships, general ventilation and combustion systems, as well as musical instruments. Both a graduate textbook and a reference for researchers, Acoustics of Fluid-Structure Interactions is an important synthesis of information in this field. It will also aid engineers in the theory and practice of noise control.




Fluid-Structure Interactions and Uncertainties


Book Description

This book is dedicated to the general study of fluid structure interaction with consideration of uncertainties. The fluid-structure interaction is the study of the behavior of a solid in contact with a fluid, the response can be strongly affected by the action of the fluid. These phenomena are common and are sometimes the cause of the operation of certain systems, or otherwise manifest malfunction. The vibrations affect the integrity of structures and must be predicted to prevent accelerated wear of the system by material fatigue or even its destruction when the vibrations exceed a certain threshold.




Fluid-Structure-Sound Interactions and Control


Book Description

This book presents the proceedings of the Symposium on Fluid-Structure-Sound Interactions and Control (FSSIC), (held in Tokyo on Aug. 21-24, 2017), which largely focused on advances in the theory, experiments on, and numerical simulation of turbulence in the contexts of flow-induced vibration, noise and their control. This includes several practical areas of application, such as the aerodynamics of road and space vehicles, marine and civil engineering, nuclear reactors and biomedical science, etc. Uniquely, these proceedings integrate acoustics with the study of flow-induced vibration, which is not a common practice but can be extremely beneficial to understanding, simulating and controlling vibration. The symposium provides a vital forum where academics, scientists and engineers working in all related branches can exchange and share their latest findings, ideas and innovations – bringing together researchers from both east and west to chart the frontiers of FSSIC.




Fluid-Structure Interaction


Book Description

Fluid-Structure Interaction: An Introduction to FiniteElement Coupling fulfils the need for an introductive approachto the general concepts of Finite and Boundary Element Methods forFSI, from the mathematical formulation to the physicalinterpretation of numerical simulations. Based on theauthor’s experience in developing numerical codes forindustrial applications in shipbuilding and in teaching FSI to bothpracticing engineers and within academia, it provides acomprehensive and self–contained guide that is geared towardboth students and practitioners of mechanical engineering. Composedof six chapters, Fluid–Structure Interaction: An Introduction to FiniteElement Coupling progresses logically from formulations andapplications involving structure and fluid dynamics, fluid andstructure interactions and opens to reduced order-modelling forvibro-acoustic coupling. The author describes simple yetfundamental illustrative examples in detail, using analyticaland/or semi–analytical formulation & designed both toillustrate each numerical method and also to highlight a physicalaspect of FSI. All proposed examples are simple enough to becomputed by the reader using standard computational tools such asMATLAB, making the book a unique tool for self–learning andunderstanding the basics of the techniques for FSI, or can serve asverification and validation test cases of industrial FEM/BEM codesrendering the book valuable for code verification and validationpurposes.




Modelling of Mechanical Systems: Fluid-Structure Interaction


Book Description

Written by an eminent authority in the field, Modelling of Mechanical Systems: Fluid-Structure Interaction is the third in a series of four self-contained volumes suitable for practitioners, academics and students alike in engineering, physical sciences and applied mechanics. The series skilfully weaves a theoretical and pragmatic approach to modelling mechanical systems and to analysing the responses of these systems. The study of fluid-structure interactions in this third volume covers the coupled dynamics of solids and fluids, restricted to the case of oscillatory motions about a state of static equilibrium. Physical and mathematical aspects of modelling these mechanisms are described in depth and illustrated by numerous worked out exercises.· Written by a world authority in the field in a clear, concise and accessible style · Comprehensive coverage of mathematical techniques used to perform computer-based analytical studies and numerical simulations · A key reference for mechanical engineers, researchers and graduate students




Mechanics of Flow-Induced Sound and Vibration, Volume 2


Book Description

Mechanics of Flow-Induced Sound and Vibration, Volume 2: Complex Flow-Structure Interactions, Second Edition, enables readers to fully understand flow-induced vibration and sound, unifying the disciplines of fluid dynamics, structural dynamics, vibration, acoustics, and statistics in order to classify and examine each of the leading sources of vibration and sound induced by various types of fluid motion. Starting from classical theories of aeroacoustics and hydroacoustics, a formalism of integral solutions valid for sources near boundaries is developed and then broadened to address different source types, including hydrodynamically induced cavitation and bubble noise, turbulent wall-pressure fluctuations, pipe and duct systems, lifting surface flow noise and vibration, and noise from rotating machinery. Each chapter is illustrated with comparisons of leading formulas and measured data. Combined with its companion book, Mechanics of Flow-Induced Sound and Vibration, Volume 1: General Concepts and Elementary Sources, the book covers everything an engineer needs to understand flow-induced sound and vibration. This book will be a vital source of information for postgraduate students, engineers and researchers with an interest in aerospace, ships and submarines, offshore structures, construction, and ventilation. - Presents every important topic in flow-induced sound and vibration - Covers all aspects of the topics addressed, from fundamental theory, to the analytical formulas used in practice - Provides the building blocks of computer modeling for flow-induced sound and vibration




Computational Acoustics of Noise Propagation in Fluids - Finite and Boundary Element Methods


Book Description

The book provides a survey of numerical methods for acoustics, namely the finite element method (FEM) and the boundary element method (BEM). It is the first book summarizing FEM and BEM (and optimization) for acoustics. The book shows that both methods can be effectively used for many other cases, FEM even for open domains and BEM for closed ones. Emphasis of the book is put on numerical aspects and on treatment of the exterior problem in acoustics, i.e. noise radiation.




Fluid-Structure Interactions


Book Description

Structures in contact with fluid flow, whether natural or man-made, are inevitably subject to flow-induced forces and flow-induced vibration: from plant leaves to traffic signs and to more substantial structures, such as bridge decks and heat exchanger tubes. Under certain conditions the vibration may be self-excited, and it is usually referred to as an instability. These instabilities and, more specifically, the conditions under which they arise are of great importance to designers and operators of the systems concerned because of the significant potential to cause damage in the short term. Such flow-induced instabilities are the subject of this book. In particular, the flow-induced instabilities treated in this book are associated with cross-flow, that is, flow normal to the long axis of the structure. The book treats a specific set of problems that are fundamentally and technologically important: galloping, vortex-shedding oscillations under lock-in conditions, and rain-and-wind-induced vibrations, among others. The emphasis throughout is on providing a physical description of the phenomena that is as clear and up-to-date as possible.




Sound and Structural Vibration


Book Description

This textbook looks at the analysis of audio-frequency vibration in coupled solid-fluid systems in which the role of waves in both media is emphasised.