Activation, Deactivation, and Poisoning of Catalysts


Book Description

Activation, Deactivation, and Poisoning of Catalysts deals with the circumstances and mechanisms underlying catalyst activation, deactivation, and poisoning. The emphasis is on the techniques for handling deactivating systems, not on results per se. Deactivation by fouling and sintering is given consideration. This book is organized into three sections and consists of 12 chapters. The first part is devoted to a systematic development of the manner in which catalysts are activated, deactivated, poisoned, and in some cases reactivated on a microscopic basis. The first chapter explains the concept of the active center as utilized in catalysis, along with catalyst regeneration, rejuvenation, and detoxification. In the second part, the reader is introduced to the problem of heat transfer as well as the transport of reactants and products in the interior of the particle coupled with chemical reaction therein. The macroscopic deactivation behavior of the catalyst particle is described in terms of fundamental kinetic deactivation phenomena and of parameters governing heat and mass transfer. The last part is primarily concerned with a collection of catalyst particles within the reactor, with emphasis on the global activity of the reactor. In the last chapter, a pragmatic approach is presented to predict the design and performance of chemical reactors containing a deactivating catalyst. This book is written for catalytic chemists, researchers, reactor designers, and students interested in catalyst activation, deactivation, and poisoning.




Deactivation and Poisoning of Catalysts


Book Description

Deactivation and Poisoning of Catalysts presents the most current research in the area of heterogeneous catalysis. It focuses on the chemically induced effects associated with bonded surface species that cause catalyst activity decline -- and in some cases a change in catalyst specificity. In addition, this volume examines poisoning of dispersed metal catalysts ... the thermodynamics of sulfur-metal and carbon-metal interactions ... model poisoning reactions on single crystals ... deactivation in petroleum refining and petrochemical processes ... coking of metal catalysts ... and more. The new approaches and solutions to catalyst deactivation and poisoning presented in this guide are invaluable to all heterogeneous catalysis specialists, including chemical and petroleum engineers, and surface, synthetic, physical, and industrial chemists. Book jacket.




Catalysts Deactivation, Poisoning and Regeneration


Book Description

Catalyst lifetime represents one of the most crucial economic aspects in industrial catalytic processes, due to costly shutdowns, catalyst replacements, and proper disposal of spent materials. Not surprisingly, there is considerable motivation to understand and treat catalyst deactivation, poisoning, and regeneration, which causes this research topic to continue to grow. The complexity of catalyst poisoning obviously increases along with the increasing use of biomass/waste-derived/residual feedstocks and with requirements for cleaner and novel sustainable processes. This book collects 15 research papers providing insights into several scientific and technical aspects of catalyst poisoning and deactivation, proposing more tolerant catalyst formulations, and exploring possible regeneration strategies.




Basic Principles in Applied Catalysis


Book Description

Written by a team of internationally recognized experts, this book addresses the most important types of catalytic reactions and catalysts as used in industrial practice. Both applied aspects and the essential scientific principles are described. The main topics can be summarized as follows: heterogeneous, homogeneous and biocatalysis, catalyst preparation and characterization, catalytic reaction engineering and kinetics, catalyst deactivation and industrial perspective.




Plasma Catalysis


Book Description

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.




Deactivation and Regeneration of Zeolite Catalysts


Book Description

In chemical processes, the progressive deactivation of solid catalysts is a major economic concern and mastering their stability has become as essential as controlling their activity and selectivity. For these reasons, there is a strong motivation to understand the mechanisms leading to any loss in activity and/or selectivity and to find out the efficient preventive measures and regenerative solutions that open the way towards cheaper and cleaner processes. This book covers in a comprehensive way both the fundamental and applied aspects of solid catalyst deactivation and encompasses the state-of-the-art in the field of reactions catalyzed by zeolites. This particular choice is justified by the widespread use of molecular sieves in refining, petrochemicals and organic chemicals synthesis processes, by the large variety in the nature of their active sites (acid, base, acid-base, redox, bifunctional) and especially by their peculiar features, in terms of crystallinity, structural order and textural properties, which make them ideal models for heterogeneous catalysis. The aim of this book is to be a critical review in the field of zeolite deactivation and regeneration, by collecting a series of contributions by experts in the field which describe the factors, explain the techniques to study the causes and suggest methods to prevent (or limit) catalyst deactivation. At the same time, an anthology of commercial processes and exemplar cases provides the reader with theoretical insights and practical hints on the deactivation mechanisms and draws attention to the key role played by the loss of activity on process design and industrial practice.







Catalysis for Clean Energy and Environmental Sustainability


Book Description

This book is part of a two-volume work that offers a unique blend of information on realistic evaluations of catalyst-based synthesis processes using green chemistry principles and the environmental sustainability applications of such processes for biomass conversion, refining, and petrochemical production. The volumes provide a comprehensive resource of state-of-the-art technologies and green chemistry methodologies from researchers, academics, and chemical and manufacturing industrial scientists. The work will be of interest to professors, researchers, and practitioners in clean energy catalysis, green chemistry, chemical engineering and manufacturing, and environmental sustainability. This volume focuses on catalyst synthesis and green chemistry applications for petrochemical and refining processes. While most books on the subject focus on catalyst use for conventional crude, fuel-oriented refineries, this book emphasizes recent transitions to petrochemical refineries with the goal of evaluating how green chemistry applications can produce clean energy through petrochemical industrial means. The majority of the chapters are contributed by industrial researchers and technicians and address various petrochemical processes, including hydrotreating, hydrocracking, flue gas treatment and isomerization catalysts.




Catalysis


Book Description

This volume looks at modern approaches to catalysis and reviews the extensive literature. Chapters highlight application of 2D materials in biomass conversion catalysis, plasmonic photocatalysis, catalytic demonstration of mesoporosity in the hierarchical zeolite and the effect of surface phase oxides on supported metals and catalysis. Looking to the future a chapter on ab initio machine learning for accelerating catalytic materials discovery is included. Appealing broadly to researchers in academia and industry, these illustrative chapters bridge the gap from academic studies in the laboratory to practical applications in industry not only for catalysis field but also for environmental protection. Other chapters with an industrial perspective include heterogeneous and homogeneous catalytic routes for vinyl acetate synthesis, catalysis for production of jet fuel from renewable sources by HDO/HDC and microwave-assisted catalysis for fuel conversion. Chemical reactions in ball mills is also explored. The book will be of great benefit to any researcher wanting a succinct reference on developments in this area now and looking to the future.




Catalysis Looks to the Future


Book Description

The impact of catalysis on the nation's economy is evidenced by the fact that catalytic technologies generate U.S. sales in excess of $400 billion per year and a net positive balance of trade of $16 billion annually. This book outlines recent accomplishments in the science and technology of catalysis and summarizes important likely challenges and opportunities on the near horizon. It also presents recommendations for investment of financial and human resources by industry, academe, national laboratories, and relevant federal agencies if the nation is to maintain continuing leadership in this fieldâ€"one that is critical to the chemical and petroleum processing industries, essential for energy-efficient means for environmental protection, and vital for the production of a broad range of pharmaceuticals.