Organic Synthesis Using Transition Metals


Book Description

Transition metals open up new opportunities for synthesis, because their means of bonding and their reaction mechanisms differ from those of the elements of the s and p blocks. In the last two decades the subject has mushroomed - established reactions are seeing both technical improvements and increasing numbers of applications, and new reactions are being developed. The practicality of the subject is demonstrated by the large number of publications coming from the process development laboratories of pharmaceutical companies, and its importance is underlined by the fact that three Nobel prizes have been awarded for discoveries in this field in the 21st Century already. Organic Synthesis Using Transition Metals, 2nd Edition considers the ways in which transition metals, as catalysts and reagents, can be used in organic synthesis, both for pharmaceutical compounds and for natural products. It concentrates on the bond-forming reactions that set transition metal chemistry apart from "classical" organic chemistry. Each chapter is extensively referenced and provides a convenient point of entry to the research literature. Topics covered include: introduction to transition metals in organic synthesis coupling reactions C-H activation carbonylative coupling reactions alkene and alkyne insertion reactions electrophilic alkene and alkyne complexes reactions of alkyne complexes carbene complexes h3- or p-allyl -allyl complexes diene, dienyl and arene complexes cycloaddition and cycloisomerisation reactions For this second edition the text has been extensively revised and expanded to reflect the significant improvements and advances in the field since the first edition, as well as the large number of new transition metal-catalysed processes that have come to prominence in the last 10 years – for example the extraordinary progress in coupling reactions using “designer” ligands, catalysis using gold complexes, new opportunities arising from metathesis chemistry, and C-H activation – without neglecting the well established chemistry of metals such as palladium. Organic Synthesis Using Transition Metals, 2nd Edition will find a place on the bookshelves of advanced undergraduates and postgraduates working in organic synthesis, catalysis, medicinal chemistry and drug discovery. It is also useful for practising researchers who want to refresh and enhance their knowledge of the field.




Grignard Reagents and Transition Metal Catalysts


Book Description

In 1912, the Chemistry Nobel Prize was awarded for the discovery of the so-called Grignard reagents. Nowadays, many transition metal variants are developed to modify reactivity and selectivity of the C–C bond formation reaction. The Grignard reaction is one of the fundamental organometallic reactions, often used in alcohol syntheses. With transition metals like iron, cobalt and nickel or with noble metals like copper, silver and palladium, modern Grignard reagents can be designed in reactivity, selectivity and functional group tolerance. This book, written by international experts, presents an overview on timely Grignard chemistry involving transition metals.




Activated Metals in Organic Synthesis


Book Description

Activated Metals in Organic Synthesis discusses fundamental principles of the generation of activated, highly reactive metals, and their applications in organic synthesis. Following an introductory chapter on basic forms of metals the chapters in Part 1 are devoted to common strategies utilized for the preparation of active metals. These strategies include vaporization and subsequent co-condensation of metal atoms, in addition to depassivating methods employed commonly in laboratory syntheses. Chapters in Part 2 discuss relevant organic transformations in which metal activation plays a crucial role. Specific topics covered include metal-induced reductive methods; pinacolic, Reformatsky-, and Barbier-type reactions; McMurry ketone-olefin coupling; and the Bernet-Vasella reaction. Each chapter is followed by literature citations ranging from specific references to significant reviews. Many structural formulas are provided, making it easy to follow each synthesis. The book will be an important reference for students, organic chemists, and researchers in all areas of organometallic chemistry.




Organotransition-Metal Chemistry


Book Description

Synthesis of Organotransition Metals.- Metallocarboranes: Past, Present, and Future.- Novel Rhodium and Palladium Complexes with Benzoyl and Thiobenzoyl Isocyanates as Ligands.- Polycyanovinyl Transition Metal Derivatives.- A New Preparation of Organocopper(I)-Isonitrile Complexes and Their Reactions.- An Unusual Behavior of?-Vinyl Alcohol Complexes of Transition Metals.- The Mode of Formation of Transition Metal to Carbon Bonds by Oxidative Addition.- Organoactinides: Coordination Patterns and Chemical Reactivity.- Recent Developments in Chemistry of Organolanthanides and Organoactinides.- C.




Organometallic Chemistry


Book Description

A series of critical reviews and perspectives focussing on specific aspects of organometallic chemistry interfacing with other fields of study are provided. For this volume, the critical reviews cover topics such as the activation of "inert" carbon-hydrogen bonds, ligand design and organometallic radical species. For example, Charlie O'Hara discusses how mixed-metal compounds may perform the highly selective activation of C-H bonds and, in particular, how synergic relationships between various metals are crucial to this approach. The chemistry of a remarkable series of air-stable chiral primary phosphine ligands is discussed in some depth by Rachel Hiney, Arne Ficks, Helge M3ller-Bunz, Declan Gilheany and Lee Higham. This article focuses on the preparation of these ligands and also how they may be applied in various catalytic applications. Bas De Bruin reports on how ligand radical reactivity can be employed in synthetic organometallic chemistry and catalysis to achieve selectivity in radical-type transformations. As well as highlighting ligand-centered radical transformations in open-shell transition metals, an overview of the catalytic mechanism of Co(II)-catalysed olefin cyclopropanation is given, showing that enzyme-like cooperative metal-ligand-radical reactivity is no longer limited to real enzymes. Valuable and informative comprehensive reviews in the field of organometallic chemistry are also covered in this volume. For example, organolithium and organocuprate chemistry are reviewed by Joanna Haywood and Andrew Wheatley; aspects in Group 2 (Be-Ba) and Group 12 (Zn-Hg) compounds by Robert Less, Rebecca Melen and Dominic Wright; metal clusters by Mark Humphrey and Marie Cifuentes; and recent developments in the chemistry of the elements of Group 14 - focusing on low-coordination number compounds by Richard Layfield. This volume therefore covers many synthetic and applied aspects of modern organometallic chemistry which ought to be of interest to inorganic, organic and applied catalysis fields.




Handbook of Grignard Reagents


Book Description

This handbook provides the theoretical and practical information necessary to explore new applications for Grignard reagents on a day-to-day basis, presenting a comprehensive overview of current research activities in Grignard chemistry. This book surveys specific reactions and applications of Grignard reagents, organized by type of substrate and the general category of reaction. It also summarizes the spectrum of reactions exhibited by Grignard reagents.




Iron-Catalyzed Synthesis of Fused Aromatic Compounds via C–H Bond Activation


Book Description

Iron catalysts in organic synthesis are strongly in demand because iron is non-toxic, inexpensive and the most abundant transition metal in the earth, although their use is still limited compared with that of rare, precious metals such as palladium, ruthenium and rhodium. This thesis describes the first practical example of iron catalysis in the carbon–hydrogen bond activation reaction to synthesized fused aromatic ring compounds. By using a unique combination of iron catalyst and dichloride oxidant, various kind of naphthalene and phenanthrene derivatives were synthesized via annulation reaction with alkynes including direct C–H bond activation process. This achievement opens the new possibility of low-valent iron catalysis and expands synthetic methods for a sustainable society.




Tetrahedron Reports on Organic Chemistry


Book Description

Tetrahedron Reports on Organic Chemistry




Organometallic Chemistry


Book Description

Organometallic Chemistry is the study of chemical compounds containing bonds between carbon and metal. The term "e;Metal"e; is defined deliberately broadly in this context and may include elements, such as silicon or boron, which are not metallic but are considered to be metalloids. Almost all branches of chemistry and material science now interface with organometallic chemistry. Organometallics find practical uses in stoichiometric and catalytic processes, especially processes involving carbon monoxide and alkene-derived polymers. Organometallic (OM) chemistry is the study of compounds containing, and reactions involving, metal-carbon bonds. The metal-carbon bond may be transient or temporary, but if one exists during a reaction or in a compound of interest, we're squarely in the domain of organometallic chemistry. Despite the denotational importance of the M-C bond, bonds between metals and the other common elements of organic chemistry also appear in OM chemistry: metal-nitrogen, metal-oxygen, metal-halogen, and even metal-hydrogen bonds all play a role. Metals cover a vast swath of the periodic table and include the alkali metals (group 1), alkali earth metals (group 2), transition metals (groups 3-12), the main group metals (groups 13-15, "e;under the stairs"e;), and the lanthanides and actinides. The principal idea of this book is to offer a comprehensive coverage of unconventional and thought-provoking topics in organometallic chemistry. It also supplies practical information about reaction mechanisms, along with the descriptions of contemporary applications to organic synthesis, organized by mechanism and kinetic. It will serve as a valuable reference tool for students and professional of organic and post organic chemistry, who need to become better acquainted with the subject.