Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes


Book Description

hemistry is the science about breaking and forming of bonds between atoms. One of the most important processes for organic chemistry is breaking bonds C–H, as well as C–C in various compounds, and primarily, in hydrocarbons. Among hydrocarbons, saturated hydrocarbons, alkanes (methane, ethane, propane, hexane etc. ), are especially attractive as substrates for chemical transformations. This is because, on the one hand, alkanes are the main constituents of oil and natural gas, and consequently are the principal feedstocks for chemical industry. On the other hand, these substances are known to be the less reactive organic compounds. Saturated hydrocarbons may be called the “noble gases of organic chemistry” and, if so, the first representative of their family – methane – may be compared with extremely inert helium. As in all comparisons, this parallel between noble gases and alkanes is not fully accurate. Indeed the transformations of alkanes, including methane, have been known for a long time. These reactions involve the interaction with molecular oxygen from air (burning – the main source of energy!), as well as some mutual interconversions of saturated and unsaturated hydrocarbons. However, all these transformations occur at elevated temperatures (higher than 300–500 °C) and are usually characterized by a lack of selectivity. The conversion of alkanes into carbon dioxide and water during burning is an extremely valuable process – but not from a chemist viewpoint.




Advances in Catalytic Activation of Dioxygen by Metal Complexes


Book Description

The subject of dioxygen activation and homogeneous catalytic oxidation by metal complexes has been in the focus of attention over the last 20 years. The widespread interest is illustrated by its recurring presence among the sessions and subject areas of important international conferences on various aspects of bioinorganic and coordination chemistry as well as catalysis. The most prominent examples are ICCC, ICBIC, EUROBIC, ISHC, and of course the ADHOC series of meetings focusing on the subject itself. Similarly, the number of original and review papers devoted to various aspects of dioxygen activation are on the rise. This trend is due obviously to the relevance of catalytic oxidation to biological processes such as dioxygen transport, and the action of oxygenase and oxidase enzymes related to metabolism. The structural and functional modeling of metalloenzymes, particularly of those containing iron and copper, by means of low-molecular complexes of iron, copper, ruthenium, cobalt, manganese, etc., have provided a wealth of indirect information helping to understand how the active centers of metalloenzymes may operate. The knowledge gained from the study of metalloenzyme models is also applicable in the design of transition metal complexes as catalytsts for specific reactions. This approach has come to be known as biomimetic or bioinspired catalysis and continues to be a fruitful and expanding area of research.




Organometallic Chemistry of the Transition Elements


Book Description

Organometallic chemistry belongs to the most rapidly developing area of chemistry today. This is due to the fact that research dealing with the structure of compounds and chemical bonding has been greatly intensified in recent years. Additionally, organometallic compounds have been widely utilized in catalysis, organic synthesis, electronics, etc. This book is based on my lectures concerning basic organometallic chemistry for fourth and fifth year chemistry students and on my lectures concerning advanced organometallic chemistry and homogeneous catalysis for Ph.D. graduate students. Many recent developments in the area of organometallic chemistry as weIl as homogeneous catalysis are presented. Essential research results dealing with a given class of organometallic compounds are discussed briefly. Results of physicochemical research methods of various organometallic compounds as weIl as their synthesis, properties, structures, reactivities, and applications are discussed more thoroughly. The selection of tabulated data is arbitrary because, often, it has been impossible to avoid omissions. Nevertheless, these data can be very helpful in understanding properties of organometaIlic compounds and their reactivities. All physical data are given in SI units; the interatomic distances are given in pm units in figures and tables. I am indebted to Professor S. A. Duraj for translating and editing this book. His remarks, discussions, and suggestions are greatly appreciated. I also express gratitude to Virginia E. Duraj for editing and proofreading.




Hydrocarbon Chemistry


Book Description

This book provides an unparalleled contemporary assessment of hydrocarbon chemistry – presenting basic concepts, current research, and future applications. • Comprehensive and updated review and discussion of the field of hydrocarbon chemistry • Includes literature coverage since the publication of the previous edition • Expands or adds coverage of: carboxylation, sustainable hydrocarbons, extraterrestrial hydrocarbons • Addresses a topic of special relevance in contemporary science, since hydrocarbons play a role as a possible replacement for coal, petroleum oil, and natural gas as well as their environmentally safe use • Reviews of prior edition: “...literature coverage is comprehensive and ideal for quickly reviewing specific topics...of most value to industrial chemists...” (Angewandte Chemie) and “...useful for chemical engineers as well as engineers in the chemical and petrochemical industries.” (Petroleum Science and Technology)




Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, 2 Volumes


Book Description

Transition-Metal-Catalyzed C-H Functionalization of Heterocycles A comprehensive guide to recent advances in this field Constituting the majority of all known compounds, heterocycles are structures that incorporate one or more heteroatoms within their core, thus exhibiting properties that are quite different from their all-carbon analogs. They are fundamental to all fields of chemistry and, therefore, their synthesis and modification has attracted a great deal of attention in the recent years. In this vein, transition-metal-catalyzed C-H bond functionalization forms a crucial tool for generating and analyzing heterocyclic compounds. Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume Set, showcases diverse C-H functionalization methodologies and their incorporation into the latest research. The chapters serve as an essential tool depicting detailed site-selective functionalization of heterocyclic cores, along with a comprehensive discussion on their mechanistic approaches. Readers of Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume-Set will also find: A detailed introduction to C-H activation along with the mechanistic aspects of transition-metal-catalyzed C-H bond activation reactions Easy-to-use structures with each chapter dedicated to a type of heterocycle and its specific functionalization methodologies A leading team of international authors in C-H bond functionalization Transition-Metal-Catalyzed C-H Functionalization of Heterocycles, Two-Volume-Set is a valuable guide for students and researchers in organic synthesis and process development, in both academic and industrial contexts.




Energetics of Organometallic Species


Book Description

An overview of modern organometallic thermochemistry, made by some of the most active scientists in the area, is offered in this book. The contents correspond to the seventeen lectures delivered at the NATO ASI Energetics of Organometallic Species (Curia, Portugal, September 1991), plus three other invited contributions from participants of that summer school. These papers reflect a variety of research interests, and discuss results obtained with several techniques. It is therefore considered appropriate to add a few preliminary words, attempting to bring some unity out of that diversity. In the first three chapters, results obtained by classical calorimetric methods are described. Modern organometallic thermochemistry started in Manchester, with Henry Skinner, and his pioneering work is briefly surveyed in the first chapter. The historical perspective is followed by a discussion of a very actual issue: the trends of stepwise bond dissociation enthalpies. Geoff Pilcher, another Manchester thermochemist, makes, in chapter 2, a comprehensive and authoritative survey of problems found in the most classical of thermochemical techniques - combustion calorimetr- applied to organometallic compounds. Finally, results from another classical technique, reaction-solution calorimetry, are reviewed in the third chapter, by Tobin Marks and coworkers. More than anybody else, Tobin Marks has used thermochemical values to define synthetic strategies for organometallic compounds, thus indicating an application of thermochemical data of which too little use has been made so far.




Fiscal year 1985 Department of Energy authorization


Book Description




Synthesis of Organometallic Compounds


Book Description

Inorganic Chemistry: Inorganic Chemistry: A Textbook Series This series reflects the breadth of modern research in inorganic chemistry and fulfils the need for advanced texts. The series covers the whole range of inorganic and physical chemistry, solid state chemistry, coordination chemistry, main group chemistry and bioinorganic chemistry. Synthesis of Organometallic Compounds A Practical Guide Edited by Sanshiro Komiya Tokyo University of Agriculture and Technology, Japan. This book describes the concepts of organometallic chemistry and provides an overview of the chemistry of each metal including the synthesis and handling of its important organometallic compounds. Synthesis of Organometallic Compounds: A Practical Guide provides: an excellent introduction to organometallic synthesis detailed synthetic protocols for the most important organometallic syntheses an overview of the reactivity, applications and versatility of organometallic compounds a survey of metals and their organometallic derivatives The purpose of this book is to serve as a practical guide to understanding the general concepts of organometallics for graduate students and scientists who are not necessarily specialists in organometallic chemistry.




Direct Natural Gas Conversion to Value-Added Chemicals


Book Description

Direct Natural Gas Conversion to Value-Added Chemicals comprehensively discusses all major aspects of natural gas conversion and introduces a broad spectrum of recent technological developments. Specifically, the book describes heterogeneous and homogeneous catalysis, microwave-assisted conversion, non-thermal plasma conversion, electrochemical conversion, and novel chemical looping conversion approaches. Provides an excellent benchmark resource for the industry and academics Appeals to experienced researchers as well as newcomers to the field, despite the variety of contributing authors and the complexity of the material covered Includes all aspects of direct natural gas conversion: fundamental chemistry, different routes of conversion, catalysts, catalyst deactivation, reaction engineering, novel conversion concepts, thermodynamics, heat and mass transfer issues, system design, and recent research and development Discusses new developments in natural gas conversion and future challenges and opportunities This book is as an excellent resource for advanced students, technology developers, and researchers in chemical engineering, industrial chemistry, and others interested in the conversion of natural gas.