Active Calculus Multivariable 2018


Book Description

Active Calculus Multivariable is different from most existing texts in at least the following ways: The style of the text requires students to be active learners; there are very few worked examples in the text, with there instead being 3 or 4 activities per section that engage students in connecting ideas, solving problems, and developing understanding of key calculus ideas. Each section begins with motivating questions, a brief introduction, and a preview activity, all of which are designed to be read and completed prior to class. There are several WeBWorK exercises in each section along with additional challenging exercises. The book is open source and can be used as a primary or supplemental text.




Active Calculus 2018


Book Description

Active Calculus - single variable is a free, open-source calculus text that is designed to support an active learning approach in the standard first two semesters of calculus, including approximately 200 activities and 500 exercises. In the HTML version, more than 250 of the exercises are available as interactive WeBWorK exercises; students will love that the online version even looks great on a smart phone. Each section of Active Calculus has at least 4 in-class activities to engage students in active learning. Normally, each section has a brief introduction together with a preview activity, followed by a mix of exposition and several more activities. Each section concludes with a short summary and exercises; the non-WeBWorK exercises are typically involved and challenging. More information on the goals and structure of the text can be found in the preface.




Active Prelude to Calculus


Book Description

Active Prelude to Calculus is designed for college students who aspire to take calculus and who either need to take a course to prepare them for calculus or want to do some additional self-study. Many of the core topics of the course will be familiar to students who have completed high school. At the same time, we take a perspective on every topic that emphasizes how it is important in calculus. This text is written in the spirit of Active Calculus and is especially ideal for students who will eventually study calculus from that text. The reader will find that the text requires them to engage actively with the material, to view topics from multiple perspectives, and to develop deep conceptual understanding of ideas.Many courses at the high school and college level with titles such as "college algebra", "precalculus", and "trigonometry" serve other disciplines and courses other than calculus. As such, these prerequisite classes frequently contain wide-ranging material that, while mathematically interesting and important, isn't necessary for calculus. Perhaps because of these additional topics, certain ideas that are essential in calculus are under-emphasized or ignored. In Active Prelude to Calculus, one of our top goals is to keep the focus narrow on the following most important ideas. Those most important ideas include: functions as processes; average rate of change; a library of basic functions; families of functions that model important phenomena; the sine and cosine are circular functions; inverses of functions; exact values versus approximate ones; and long-term trends, unbounded behavior, and limits of functions. See more in the preface of the text at https: //activecalculus.org/prelude/preface-our-goals.html.The text is available in three different formats: HTML, PDF, and print, each of which is available via links on the landing page at https: //activecalculus.org/. The first two formats are free.







Calculus


Book Description

Application-oriented introduction relates the subject as closely as possible to science with explorations of the derivative; differentiation and integration of the powers of x; theorems on differentiation, antidifferentiation; the chain rule; trigonometric functions; more. Examples. 1967 edition.




Multivariable Calculus with Applications


Book Description

This text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes’ and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics.




Mathematics for Machine Learning


Book Description

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.




A Problems Based Course in Advanced Calculus


Book Description

This textbook is suitable for a course in advanced calculus that promotes active learning through problem solving. It can be used as a base for a Moore method or inquiry based class, or as a guide in a traditional classroom setting where lectures are organized around the presentation of problems and solutions. This book is appropriate for any student who has taken (or is concurrently taking) an introductory course in calculus. The book includes sixteen appendices that review some indispensable prerequisites on techniques of proof writing with special attention to the notation used the course.




Calculus for Engineering Students


Book Description

Calculus for Engineering Students: Fundamentals, Real Problems, and Computers insists that mathematics cannot be separated from chemistry, mechanics, electricity, electronics, automation, and other disciplines. It emphasizes interdisciplinary problems as a way to show the importance of calculus in engineering tasks and problems. While concentrating on actual problems instead of theory, the book uses Computer Algebra Systems (CAS) to help students incorporate lessons into their own studies. Assuming a working familiarity with calculus concepts, the book provides a hands-on opportunity for students to increase their calculus and mathematics skills while also learning about engineering applications. - Organized around project-based rather than traditional homework-based learning - Reviews basic mathematics and theory while also introducing applications - Employs uniform chapter sections that encourage the comparison and contrast of different areas of engineering




Calculus: Early Transcendentals Multivariable


Book Description

The authors goal for the book is that its clearly written, could be read by a calculus student and would motivate them to engage in the material and learn more. Moreover, to create a text in which exposition, graphics, and layout would work together to enhance all facets of a student’s calculus experience. They paid special attention to certain aspects of the text: 1. Clear, accessible exposition that anticipates and addresses student difficulties. 2. Layout and figures that communicate the flow of ideas. 3. Highlighted features that emphasize concepts and mathematical reasoning including Conceptual Insight, Graphical Insight, Assumptions Matter, Reminder, and Historical Perspective. 4. A rich collection of examples and exercises of graduated difficulty that teach basic skills as well as problem-solving techniques, reinforce conceptual understanding, and motivate calculus through interesting applications. Each section also contains exercises that develop additional insights and challenge students to further develop their skills.