Active Galactic Nuclei


Book Description

Active Galactic Nuclei This AGN textbook gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy distribution will be discussed, pointing out what can be observed in different wavebands. The different physical models are presented together with formula important for the understanding of AGN physics. Furthermore, the authors discuss the AGN with respect to its environment, host galaxy, feedback in galaxies and in clusters of galaxies, variability, etc. and finally the cosmological evolution of the AGN phenomenon. This book includes phenomena based on new results in the X-Ray and gamma-ray domain from new telescopes such as Chandra, XMM-Newton, the Fermi Gamma-Ray Space Telescope, and the VHE regime not mentioned so far in AGN books. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. From the contents: The observational picture of AGN Radiative processes The central engine AGN types and unification AGN through the electromagnetic spectrum AGN variability Environment Quasars and cosmology Formation, evolution and the ultimate fate of AGN What we do not know (yet)




Active Galactic Nuclei


Book Description

This is the first comprehensive treatment of active galactic nuclei--the cosmic powerhouses at the core of many distant galaxies. The term active galactic nuclei refers to quasars, radio galaxies, Seyfert galaxies, blazars, and related objects, all of which are believed to share a similar central engine--a supermassive black hole many times the mass of the Sun. Astrophysicists have studied these phenomena for the past several decades and have begun to develop a consensus about many of their properties and internal mechanisms. Julian Krolik, one of the world's leading authorities on the subject, sums up leading ideas from across the entire range of research, making this book an invaluable resource for astronomers, physicists interested in applications of the theory of gravitation, and graduate students. Krolik begins by addressing basic questions about active galactic nuclei: What are they? How can they be found? How do they evolve? He assesses the evidence for massive black holes and considers how they generate power by accretion. He discusses X-ray and g-ray emission, radio emission and jets, emission and absorption lines, anisotropic appearance, and the relationship between an active nucleus and its host galaxy. He explores the mysteries of what ignites, fuels, and extinguishes active galactic nuclei, and concludes with a general review of where the field now stands. The book is unique in paying careful attention to relevant physics as well as astronomy, reflecting in part the importance of general relativity to understanding active galactic nuclei. Clear, authoritative, and detailed, this is crucial reading for anyone interested in one of the most dynamic areas of astrophysics today.




Cosmic Rays at Earth


Book Description

In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery.Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological and medical aspects of the cosmic radiation because of it ionizing character and the inevitable irradiation to which we are exposed. This book is a reference manual for researchers and students of cosmic ray physics and associated fields and phenomena. It is not intended to be a tutorial. However, the book contains an adequate amount of background materials that its content should be useful to a broad community of scientists and professionals. The present book contains chiefly a data collection in compact form that covers the cosmic radiation in the vicinity of the Earth, in the Earth's atmosphere, at sea level and underground. Included are predominantly experimental but also theoretical data. In addition the book contains related data, definitions and important relations. The aim of this book is to offer the reader in a single volume a readily available comprehensive set of data that will save him the need of frequent time consuming literature searches.




Relativistic Jets from Active Galactic Nuclei


Book Description

Written by a carefully selected consortium of researchers working in the field, this book fills the gap for an up-to-date summary of the observational and theoretical status. As such, this monograph includes all used wavelengths, from radio to gamma, the FERMI telescope, a history and theory refresher, and jets from gamma ray bursts. For astronomers, nuclear physicists, and plasmaphysicists.




An Introduction to Active Galactic Nuclei


Book Description

How can we test if a supermassive black hole lies at the heart of every active galactic nucleus? What are LINERS, BL Lacs, N galaxies, broad-line radio galaxies and radio-quiet quasars and how do they compare? This timely textbook answers these questions in a clear, comprehensive and self-contained introduction to active galactic nuclei - for graduate students in astronomy and physics. The study of AGN is one of the most dynamic areas of contemporary astronomy, involving one fifth of all research astronomers. This textbook provides a systematic review of the observed properties of AGN across the entire electromagnetic spectrum, examines the underlying physics, and shows how the brightest AGN, quasars, can be used to probe the farthest reaches of the Universe. This book serves as both an entry point to the research literature and as a valuable reference for researchers in the field.




Dynamics and Evolution of Galactic Nuclei


Book Description

Deep within galaxies like the Milky Way, astronomers have found a fascinating legacy of Einstein's general theory of relativity: supermassive black holes. Connected to the evolution of the galaxies that contain these black holes, galactic nuclei are the sites of uniquely energetic events, including quasars, stellar tidal disruptions, and the generation of gravitational waves. This textbook is the first comprehensive introduction to dynamical processes occurring in the vicinity of supermassive black holes in their galactic environment. Filling a critical gap, it is an authoritative resource for astrophysics and physics graduate students, and researchers focusing on galactic nuclei, the astrophysics of massive black holes, galactic dynamics, and gravitational wave detection. It is an ideal text for an advanced graduate-level course on galactic nuclei and as supplementary reading in graduate-level courses on high-energy astrophysics and galactic dynamics. David Merritt summarizes the theoretical work of the last three decades on the evolution of galactic nuclei, the formation of massive black holes, and the interaction between black holes and stars. He explores in depth such important topics as observations of galactic nuclei, dynamical models, weighing black holes, motion near supermassive black holes, evolution of nuclei due to gravitational encounters, loss cone theory, and binary supermassive black holes. Self-contained and up-to-date, the textbook includes a summary of the current literature and previously unpublished work by the author. For researchers working on active galactic nuclei, galaxy evolution, and the generation of gravitational waves, this book will be an essential resource.




The Physics and Evolution of Active Galactic Nuclei


Book Description

A comprehensive introduction to the theory underpinning our study of active galactic nuclei and the ways we observe them.




Modern Cosmology


Book Description

An advanced text for senior undergraduates, graduate students and physical scientists in fields outside cosmology. This is a self-contained book focusing on the linear theory of the evolution of density perturbations in the universe, and the anisotropiesin the cosmic microwave background.




Knowledge Discovery in Big Data from Astronomy and Earth Observation


Book Description

Knowledge Discovery in Big Data from Astronomy and Earth Observation: Astrogeoinformatics bridges the gap between astronomy and geoscience in the context of applications, techniques and key principles of big data. Machine learning and parallel computing are increasingly becoming cross-disciplinary as the phenomena of Big Data is becoming common place. This book provides insight into the common workflows and data science tools used for big data in astronomy and geoscience. After establishing similarity in data gathering, pre-processing and handling, the data science aspects are illustrated in the context of both fields. Software, hardware and algorithms of big data are addressed. Finally, the book offers insight into the emerging science which combines data and expertise from both fields in studying the effect of cosmos on the earth and its inhabitants. - Addresses both astronomy and geosciences in parallel, from a big data perspective - Includes introductory information, key principles, applications and the latest techniques - Well-supported by computing and information science-oriented chapters to introduce the necessary knowledge in these fields




Analyzing the Physics of Radio Telescopes and Radio Astronomy


Book Description

In the field of astrophysics, modern developments of practice are emerging in order to further understand the spectral information derived from cosmic sources. Radio telescopes are a current mode of practice used to observe these occurrences. Despite the various accommodations that this technology offers, physicists around the globe need a better understanding of the underlying physics and operational components of radio telescopes as well as an explanation of the cosmic objects that are being detected. Analyzing the Physics of Radio Telescopes and Radio Astronomy is an essential reference source that discusses the principles of the astronomical instruments involved in the construction of radio telescopes and the analysis of cosmic sources and celestial objects detected by this machinery. Featuring research on topics such as electromagnetic theory, antenna design, and geometrical optics, this book is ideally designed for astrophysicists, engineers, researchers, astronomers, students, and educators seeking coverage on the operational methods of radio telescopes and understanding the physical processes of radio astronomy.