Smart Structures Theory


Book Description

This book focuses on smart materials and structures, which are also referred to as intelligent, adaptive, active, sensory, and metamorphic. The ultimate goal is to develop biologically inspired multifunctional materials with the capability to adapt their structural characteristics, monitor their health condition, perform self-diagnosis and self-repair, morph their shape, and undergo significant controlled motion.




Smart Structures and Materials


Book Description

This book introduces the enabling concepts that make up the so-called smart structure and presents a number of brief case studies to illustrate the applications of these concepts. It examines the domains of the individual technologies and defines the challenges faced by the integrator. The book is particularly effective for the potential system user who needs a good technical general background on the subject and is also useful for students and researchers in contributory technologies who want to better understand the context of their work. Consultants in civil and structural engineering will also find it of interest.




Smart Structures and Materials


Book Description

This work was compiled with expanded and reviewed contributions from the 7th ECCOMAS Thematic Conference on Smart Structures and Materials, that was held from 3 to 6 June 2015 at Ponta Delgada, Azores, Portugal. The Conference provided a comprehensive forum for discussing the current state of the art in the field as well as generating inspiration for future ideas specifically on a multidisciplinary level. The scope of the Conference included topics related to the following areas: Fundamentals of smart materials and structures; Modeling/formulation and characterization of smart actuators, sensors and smart material systems; Trends and developments in diverse areas such as material science including composite materials, intelligent hydrogels, interfacial phenomena, phase boundaries and boundary layers of phase boundaries, control, micro- and nano-systems, electronics, etc. to be considered for smart systems; Comparative evaluation of different smart actuators and sensors; Analysis of structural concepts and designs in terms of their adaptability to smart technologies; Design and development of smart structures and systems; Biomimetic phenomena and their inspiration in engineering; Fabrication and testing of smart structures and systems; Applications of smart materials, structures and related technology; Smart robots; Morphing wings and smart aircrafts; Artificial muscles and biomedical applications; Smart structures in mechatronics; and Energy harvesting.




Smart Structures


Book Description

Synthesizing knowledge acquired as a result of significant research and development over recent years, Smart Structures clearly illustrates why these structures are of such intense current interest. Gaudenzi offers valuable insight into both how they behave and how and at what cost they could be designed and produced for real life applications in cutting edge fields such as vibration control, shape morphing, structural health monitoring and energy transduction. Smart Structures offers a basic and fundamental description of smart structures from the physical, mathematical and engineering viewpoint. It explains the basic physics relating to the behaviour of active materials, gives the mathematical background behind the phenomena, and provides tools for numerical simulation. It also offers an insight into considerations related to the manufacturing, assembly and integration of smart structures. Smart Structures is divided into 5 sections: in the first part a definition of smart structures is proposed, the motivation for developing a smart structure presented and the basic physics of active materials such aspiezoelectrics, electrostrictives, magnetostrictives and shape memory alloys briefly recalled. A second part is devoted to the mathematical modelling of piezoelectric bodies. The third part discusses actuation and sensing mechanisms based on which the active part of a smart structure will produce “results” on the passive one. The fourth part deals with active composites at the micromechanical and macromechanical level, and the fifth part is devoted to applications of smart structures with examples taken from the aerospace field. This introduction to smart structures will be useful both for structural and mechanical designers, and for students and researchers at graduate level or beyond. The diverse industries involved in this rapidly evolving field include aerospace, automotive and bioengineering.




Encyclopedia of Smart Materials


Book Description

Smart materials are materials that have one or more property that can be significantly changed in a controlled fashion by external stimuli, such as stress, temperature, moisture, or pH. Active materials and smart structures offer a wealth of new opportunities to human ingenuity and engineering design. Whereas smart structures have the attributes of adaptability, flexibility, and even 'intelligence', the active materials are the enabling factors that make smart composite structures possible. This new Major Reference Work on smart materials provides a full and comprehensive source of information for both researchers and practitioners on the fundamental and recent developments in the fields of design, development, manufacturing and application of smart materials. Comprehensive subject coverage across the whole field of Smart Materials in one integrated resource In-depth explanation of the latest developments and research topics Thematically arranged to allow the user to easily find what they need




Adaptronics and Smart Structures


Book Description

Adaptronics is the term encompassing technical fields that have become known internationally under the names "smart materials", "intelligent structures", and "smart structures". Adaptronics contributes to the optimisation of systems and products. It bridges the gap between material and system or product, and incorporates the search for multi-functional materials and elements and their integration in systems or structures. The authors of this book have taken on the task of displaying the current state of the art in this fascinating field. The system components, actuators, sensors and controllers, technical fundamentals, materials, design rules and practical solutions are all described. Selected sample applications are also presented and current development trends are demonstrated.




Dynamics of Advanced Materials and Smart Structures


Book Description

Two key words for mechanical engineering in the future are Micro and Intelligence. It is weIl known that the leadership in the intelligence technology is a marter of vital importance for the future status of industrial society, and thus national research projects for intelligent materials, structures and machines have started not only in advanced countries, but also in developing countries. Materials and structures which have self-sensing, diagnosis and actuating systems, are called intelligent or smart, and are of growing research interest in the world. In this situation, the IUT AM symposium on Dynamics 0/ Advanced Materials and Smart Structures was a timely one. Smart materials and structures are those equipped with sensors and actuators to achieve their designed performance in achanging environment. They have complex structural properties and mechanical responses. Many engineering problems, such as interface and edge phenomena, mechanical and electro-magnetic interaction/coupling and sensing, actuating and control techniques, arise in the development ofintelligent structures. Due to the multi-disciplinary nature ofthese problems, all ofthe classical sciences and technologies, such as applied mathematics, material science, solid and fluid mechanics, control techniques and others must be assembled and used to solve them. IUTAM weIl understands the importance ofthis emerging technology. An IUTAM symposium on Smart Structures and Structronic Systems (Chaired by U.




Adaptronics – Smart Structures and Materials


Book Description

Since the 1980s, scientists have been researching adaptive structures for materials, for multifunctional elements or even for complete systems. Adaptronics (smart materials, smart structures, smart systems) is a field of distinct interdisciplinarity. The book therefore offers an interdisciplinary view of adaptronic systems, materials and functional elements and their applications. The subject matter integrates various engineering disciplines, from electrical engineering and information technology to manufacturing and control engineering, materials engineering and structural mechanics - to name but a few of the relevant subject areas. Starting from the basic principles and variants of adaptronic systems and functional materials, the textbook explains the different construction methods of functional elements. Building on this, readers learn how to apply this knowledge to active shape control, active vibration control and active vibroacoustics. For each of these topics the author presents current examples from research, discusses research results and future research questions. Each of the nine chapters closes with references to further literature. An index of the mathematical symbols used and a keyword index facilitate learning for readers.The book is aimed at Master's students in engineering courses such as mechanical engineering, aerospace engineering, mechatronics, automotive engineering and related courses. The book provides a comprehensive overview for industrial practitioners who want to familiarize themselves with the field of adaptronics and also serves as a reliable reference book.




The British Chess Magazine; Volume 16


Book Description

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.