Recent Trends in Mechatronics Towards Industry 4.0


Book Description

This book presents part of the iM3F 2020 proceedings from the Mechatronics track. It highlights key challenges and recent trends in mechatronics engineering and technology that are non-trivial in the age of Industry 4.0. It discusses traditional as well as modern solutions that are employed in the multitude spectra of mechatronics-based applications. The readers are expected to gain an insightful view on the current trends, issues, mitigating factors as well as solutions from this book.







Vibration Control of Active Structures


Book Description

My objective in writing this book was to cross the bridge between the structural dynamics and control communities, while providing an overview of the potential of SMART materials for sensing and actuating purposes in active vibration c- trol. I wanted to keep it relatively simple and focused on systems which worked. This resulted in the following: (i) I restricted the text to fundamental concepts and left aside most advanced ones (i.e. robust control) whose usefulness had not yet clearly been established for the application at hand. (ii) I promoted the use of collocated actuator/sensor pairs whose potential, I thought, was strongly underestimated by the control community. (iii) I emphasized control laws with guaranteed stability for active damping (the wide-ranging applications of the IFF are particularly impressive). (iv) I tried to explain why an accurate pred- tion of the transmission zeros (usually called anti-resonances by the structural dynamicists) is so important in evaluating the performance of a control system. (v) I emphasized the fact that the open-loop zeros are more difficult to predict than the poles, and that they could be strongly influenced by the model trun- tion (high frequency dynamics) or by local effects (such as membrane strains in piezoelectric shells), especially for nearly collocated distributed actuator/sensor pairs; this effect alone explains many disappointments in active control systems.










Vibration Problems in Structures


Book Description

Authors: Hugo Bachmann, Walter J. Ammann, Florian Deischl, Josef Eisenmann, Ingomar Floegl, Gerhard H. Hirsch, Günter K. Klein, Göran J. Lande, Oskar Mahrenholtz, Hans G. Natke, Hans Nussbaumer, Anthony J. Pretlove, Johann H. Rainer, Ernst-Ulrich Saemann, Lorenz Steinbeisser. Large structures such as factories, gymnasia, concert halls, bridges, towers, masts and chimneys can be detrimentally affected by vibrations. These vibrations can cause either serviceability problems, severely hampering the user's comfort, or safety problems. The aim of this book is to provide structural and civil engineers working in construction and environmental engineering with practical guidelines for counteracting vibration problems. Dynamic actions are considered from the following sources of vibration: - human body motions, - rotating, oscillating and impacting machines, - wind flow, - road traffic, railway traffic and construction work. The main section of the book presents tools that aid in decision-making and in deriving simple solutions to cases of frequently occurring "normal" vibration problems. Complexer problems and more advanced solutions are also considered. In all cases these guidelines should enable the engineer to decide on appropriate solutions expeditiously. The appendices of the book contain fundamentals essential to the main chapters.




Piezoelectric Transducers for Vibration Control and Damping


Book Description

This book presents recent developments in vibration control systems that employ embedded piezoelectric sensors and actuators, reviewing ways in which active vibration control systems can be designed for piezoelectric laminated structures, paying distinct attention to how such control systems can be implemented in real time. Includes numerous examples and experimental results obtained from laboratory-scale apparatus, with details of how similar setups can be built.




Noise and Vibration Control


Book Description

The book presents a collection of articles on novel approaches to problems of current interest in vibration control by academicians, researchers, and practicing engineers from all over the world. The book is divided into eight chapters and encompasses multidisciplinary areas within the scope of noise and vibration engineering, such as structural dynamics, structural mechanics, finite element modeling, vibration control, and material vibration. Noise and Vibration Control - From Theory to Practice is a useful reference material for all engineering fraternities, including undergraduate and postgraduate students, academicians, researchers, and practicing engineers.




Ant Colony Optimization


Book Description

Ants communicate information by leaving pheromone tracks. A moving ant leaves, in varying quantities, some pheromone on the ground to mark its way. While an isolated ant moves essentially at random, an ant encountering a previously laid trail is able to detect it and decide with high probability to follow it, thus reinforcing the track with its own pheromone. The collective behavior that emerges is thus a positive feedback: where the more the ants following a track, the more attractive that track becomes for being followed; thus the probability with which an ant chooses a path increases with the number of ants that previously chose the same path. This elementary ant's behavior inspired the development of ant colony optimization by Marco Dorigo in 1992, constructing a meta-heuristic stochastic combinatorial computational methodology belonging to a family of related meta-heuristic methods such as simulated annealing, Tabu search and genetic algorithms. This book covers in twenty chapters state of the art methods and applications of utilizing ant colony optimization algorithms. New methods and theory such as multi colony ant algorithm based upon a new pheromone arithmetic crossover and a repulsive operator, new findings on ant colony convergence, and a diversity of engineering and science applications from transportation, water resources, electrical and computer science disciplines are presented.




Vibration of Plates


Book Description

Plates are integral parts of most engineering structures and their vibration analysis is required for safe design. Vibration of Plates provides a comprehensive, self-contained introduction to vibration theory and analysis of two-dimensional plates. Reflecting the author's more than 15 years of original research on plate vibration, this book present