Handbook of Transition Metal Polymerization Catalysts


Book Description

Including recent advances and historically important catalysts, this book overviews methods for developing and applying polymerization catalysts – dealing with polymerization catalysts that afford commercially acceptable high yields of polymer with respect to catalyst mass or productivity. • Contains the valuable data needed to reproduce syntheses or use the catalyst for new applications • Offers a guide to the design and synthesis of catalysts, and their applications in synthesis of polymers • Includes the information essential for choosing the appropriate reactions to maximize yield of polymer synthesized • Presents new chapters on vanadium catalysts, Ziegler catalysts, laboratory homopolymerization, and copolymerization




Olefin Metathesis and Metathesis Polymerization


Book Description

This book is a follow-up to Ivins Olefin Metathesis, (Academic Press, 1983). Bringing the standard text in the field up to date, this Second Edition is a result of rapid growth in the field, sparked by the discovery of numerous well-defined metal carbene complexes that can act as very efficient initiators of all types of olefin metathesis reaction, including ring-closing metathesis of acyclic dienes, enynes, and dienynes; ring-opening metathesis polymerizationof cycloalkenes, acyclic diene metathesis polymerization; and polymerization of alkynes, as well as simple olefin metathesis. Olefin Metathesis and Metathesis Polymerization provides a broad, up-to-date account of the subject from its beginnings in 1957 to the latest applications in organic synthesis. The book follows the same format as the original, making it useful toteachers and to researchers, and will be of particular interest to those working in the fields of organic chemistry, polymer chemistry, organometallic chemistry, catalysis, materials science and chemical engineering. - Discusses different classes of olefin metathesis and the choice of reaction conditions and catalyst - Considers commercial processes with examples from existing and new technologies - Provides a complete overview of the subject from its beginning to the present day




Functionalized Polymers


Book Description

Functionalized polymers are macromolecules to which chemically bound functional groups are attached which can be used as catalysts, reagents, protective groups, etc. Functionalized polymers have low cost, ease of processing and attractive features for functional organic molecules. Chemical reactions for the introduction of functional groups in polymers and the conversion of functional groups in polymers depend on different properties. Such properties are of great importance for functionalization reactions for possible applications of reactive polymers. This book deals with the synthesis and design of various functional polymers, the modification of preformed polymer backbones and their various applications.




Functional Polymers by Post-Polymerization Modification


Book Description

In modern polymer science a variety of polymerization methods for the direct synthesis of polymers bearing functional groups are known. However, there is still a large number of functional groups that may either completely prevent polymerization or lead to side reactions. Post-polymerization modification, also known as polymer-analogous modification, is an alternative approach to overcome these limitations. It is based on the polymerization of monomers with functional groups that are inert towards the polymerization conditions but allow a quantitative conversion in a subsequent reaction step yielding a broad range of other functional groups. Thus, diverse libraries of functional polymers with identical average degrees of polymerization but variable side chain functionality may easily be generated. Filling the gap for a book dealing with synthetic strategies and recent developments, this volume provides a comprehensive and up-to-date overview of the field of post-polymerization modification. As such, the international team of expert authors covers a wide range of topics, including new synthetic techniques utilizing different reactive groups for post-polymerization modifications with examples ranging from modification of biomimetic and biological polymers to modification of surfaces. With its guidelines this is an indispensable and interdisciplinary reference for scientists working in both academic and industrial polymer research.




Metathesis Polymerization of Olefins and Polymerization of Alkynes


Book Description

This book contains contributions from inorganic, organic and polymer chemists, who join forces to report on the state of the art in ring opening metathesis polymerization, acyclic diene metathesis and alkyne polymerization. Topics covered are: mechanism of ROMP reactions, new catalysts for ROMP, new products by ROMP, new catalysts for ADMET, new products by ADMET, degradation of polymers by metathesis reactions, alkyne polymerization and metathesis, and industrial applications of metathesis reactions.




Polymers from Plant Oils


Book Description

Unique state-of-the-art book on an important topic in renewable materials The purpose of this monograph is to provide a thorough outlook on the topic related to the synthesis and characterization of original macromolecular materials derived from plant oils, an important part of the broader steadily growing discipline of polymers from renewable resources. The interest in vegetable oils as sources of biodiesel and materials has witnessed a remarkable growth of scientific and industrial interest since the beginning of the third millennium responding to the pressing drive to implement sustainability in the energy and materials sectors. The book highlights the most relevant strategies being pursued to elaborate polymers derived from a variety of common oils, by direct activation or through chemical modifications yielding novel monomers. Because glycerol is the main byproduct of biodiesel production, it is treated here as the other logical source of macromolecular synthesis. Each of the different approaches is illustrated by an introductory layout of the underlying chemical mechanisms, followed by examples of notable achievements in terms of the properties and potential applications of the ensuing materials, which span a wide range of structures and performances. In particular, original pathways involving click-chemistry reactions as thiol-ene and Diels-Alder couplings and metathesis polymerizations are discussed and shown to reflect the involvement of a growing number of research programs worldwide.




Alkene Metathesis in Organic Synthesis


Book Description

Organometallic chemistry is a well established research area at the interface of organic and inorganic chemistry. In recent years this field has undergone a ren aissance as our understanding of organometallic structure, properties and mechanism has opened the way for the design of organometallic compounds and reactions tailored to the needs of such diverse areas as medicine, biology, materials and polymer sciences and organic synthesis. For example, in the de velopment of new catalytic processes, organometallic chemistry is helping meet the challenge to society that the economic and environmental necessities of the future pose. As this field becomes increasingly interdisciplinary, we recognize the need for critical overviews of new developments that are of broad significance. This is our goal in starting this new series Topics in Organometallic Chemistry. The scope of coverage includes a broad range of topics of pure and applied or ganometallic chemistry, where new breakthroughs are being achieved that are of significance to a larger scientific audience. Topics in Organometallic Chemistry differs from existing review series in that each volume is thematic, giving an overview of an area that has reached a stage of maturity such that coverage in a single review article is no longer possible. Furthermore, the treatment addresses a broad audience of researchers, who are not specialists in the field, starting at the graduate student level. Discussion of possible future research directions in the areas covered by the individual volumes is welcome.




The Chemistry of Bio-based Polymers


Book Description

The recent explosion of interdisciplinary research has fragmented the knowledge base surrounding renewable polymers. The Chemistry of Bio-based Polymers, 2nd edition brings together, in one volume, the research and work of Professor Johannes Fink, focusing on biopolymers that can be synthesized from renewable polymers. After introducing general aspects of the field, the book's subsequent chapters examine the chemistry of biodegradable polymeric types sorted by their chemical compounds, including the synthesis of low molecular compounds. Various categories of biopolymers are detailed including vinyl-based polymers, acid and lactone polymers, ester and amide polymers, carbohydrate-related polymers and others. Procedures for the preparation of biopolymers and biodegradable nanocomposites are arranged by chemical methods and in vitro biological methods, with discussion of the issue of "plastics from bacteria." The factors influencing the degradation and biodegradation of polymers used in food packaging, exposed to various environments, are detailed at length. The book covers the medical applications of bio-based polymers, concentrating on controlled drug delivery, temporary prostheses, and scaffolds for tissue engineering. Professor Fink also addresses renewable resources for fabricating biofuels and argues for localized biorefineries, as biomass feedstocks are more efficiently handled locally.




Polymer Science: A Comprehensive Reference


Book Description

The progress in polymer science is revealed in the chapters of Polymer Science: A Comprehensive Reference, Ten Volume Set. In Volume 1, this is reflected in the improved understanding of the properties of polymers in solution, in bulk and in confined situations such as in thin films. Volume 2 addresses new characterization techniques, such as high resolution optical microscopy, scanning probe microscopy and other procedures for surface and interface characterization. Volume 3 presents the great progress achieved in precise synthetic polymerization techniques for vinyl monomers to control macromolecular architecture: the development of metallocene and post-metallocene catalysis for olefin polymerization, new ionic polymerization procedures, and atom transfer radical polymerization, nitroxide mediated polymerization, and reversible addition-fragmentation chain transfer systems as the most often used controlled/living radical polymerization methods. Volume 4 is devoted to kinetics, mechanisms and applications of ring opening polymerization of heterocyclic monomers and cycloolefins (ROMP), as well as to various less common polymerization techniques. Polycondensation and non-chain polymerizations, including dendrimer synthesis and various "click" procedures, are covered in Volume 5. Volume 6 focuses on several aspects of controlled macromolecular architectures and soft nano-objects including hybrids and bioconjugates. Many of the achievements would have not been possible without new characterization techniques like AFM that allowed direct imaging of single molecules and nano-objects with a precision available only recently. An entirely new aspect in polymer science is based on the combination of bottom-up methods such as polymer synthesis and molecularly programmed self-assembly with top-down structuring such as lithography and surface templating, as presented in Volume 7. It encompasses polymer and nanoparticle assembly in bulk and under confined conditions or influenced by an external field, including thin films, inorganic-organic hybrids, or nanofibers. Volume 8 expands these concepts focusing on applications in advanced technologies, e.g. in electronic industry and centers on combination with top down approach and functional properties like conductivity. Another type of functionality that is of rapidly increasing importance in polymer science is introduced in volume 9. It deals with various aspects of polymers in biology and medicine, including the response of living cells and tissue to the contact with biofunctional particles and surfaces. The last volume is devoted to the scope and potential provided by environmentally benign and green polymers, as well as energy-related polymers. They discuss new technologies needed for a sustainable economy in our world of limited resources. Provides broad and in-depth coverage of all aspects of polymer science from synthesis/polymerization, properties, and characterization methods and techniques to nanostructures, sustainability and energy, and biomedical uses of polymers Provides a definitive source for those entering or researching in this area by integrating the multidisciplinary aspects of the science into one unique, up-to-date reference work Electronic version has complete cross-referencing and multi-media components Volume editors are world experts in their field (including a Nobel Prize winner)




Synthesis of Polymers


Book Description

Polymers are huge macromolecules composed of repeating structural units. While polymer in popular usage suggests plastic, the term actually refers to a large class of natural and synthetic materials. Due to the extraordinary range of properties accessible, polymers have come to play an essential and ubiquitous role in everyday life - from plastics and elastomers on the one hand to natural biopolymers such as DNA and proteins on the other hand. The study of polymer science begins with understanding the methods in which these materials are synthesized. Polymer synthesis is a complex procedure and can take place in a variety of ways. This book brings together the "Who is who" of polymer science to give the readers an overview of the large field of polymer synthesis. It is a one-stop reference and a must-have for all Chemists, Polymer Chemists, Chemists in Industry, and Materials Scientists.