Cellular Learning Automata: Theory and Applications


Book Description

This book highlights both theoretical and applied advances in cellular learning automata (CLA), a type of hybrid computational model that has been successfully employed in various areas to solve complex problems and to model, learn, or simulate complicated patterns of behavior. Owing to CLA’s parallel and learning abilities, it has proven to be quite effective in uncertain, time-varying, decentralized, and distributed environments. The book begins with a brief introduction to various CLA models, before focusing on recently developed CLA variants. In turn, the research areas related to CLA are addressed as bibliometric network analysis perspectives. The next part of the book presents CLA-based solutions to several computer science problems in e.g. static optimization, dynamic optimization, wireless networks, mesh networks, and cloud computing. Given its scope, the book is well suited for all researchers in the fields of artificial intelligence and reinforcement learning.




Evolutionary Optimization in Dynamic Environments


Book Description

Evolutionary Algorithms (EAs) have grown into a mature field of research in optimization, and have proven to be effective and robust problem solvers for a broad range of static real-world optimization problems. Yet, since they are based on the principles of natural evolution, and since natural evolution is a dynamic process in a changing environment, EAs are also well suited to dynamic optimization problems. Evolutionary Optimization in Dynamic Environments is the first comprehensive work on the application of EAs to dynamic optimization problems. It provides an extensive survey on research in the area and shows how EAs can be successfully used to continuously and efficiently adapt a solution to a changing environment, find a good trade-off between solution quality and adaptation cost, find robust solutions whose quality is insensitive to changes in the environment, find flexible solutions which are not only good but that can be easily adapted when necessary. All four aspects are treated in this book, providing a holistic view on the challenges and opportunities when applying EAs to dynamic optimization problems. The comprehensive and up-to-date coverage of the subject, together with details of latest original research, makes Evolutionary Optimization in Dynamic Environments an invaluable resource for researchers and professionals who are dealing with dynamic and stochastic optimization problems, and who are interested in applying local search heuristics, such as evolutionary algorithms.




Applications of Evolutionary Computing


Book Description

Evolutionary Computation (EC) deals with problem solving, optimization, and machine learning techniques inspired by principles of natural evolution and - netics. Just from this basic de?nition, it is clear that one of the main features of theresearchcommunityinvolvedinthestudyofitstheoryandinitsapplications is multidisciplinarity. For this reason, EC has been able to draw the attention of an ever-increasing number of researchers and practitioners in several ?elds. In its 6-year-long activity, EvoNet, the European Network of Excellence in Evolutionary Computing, has been the natural reference and incubator for that multifaceted community. EvoNet has provided logistic and material support for thosewhowerealreadyinvolvedinECbut,inthe?rstplace,ithashadacritical role in favoring the signi?cant growth of the EC community and its interactions with longer-established ones. The main instrument that has made this possible has been the series of events, ?rst organized in 1998, that have spanned over both theoretical and practical aspects of EC. Ever since 1999, the present format, in which the EvoWorkshops, a collection of workshops on the most application-oriented aspects of EC, act as satellites of a core event, has proven to be very successful and very representative of the multi-disciplinarity of EC. Up to 2003, the core was represented by EuroGP, the main European event dedicated to Genetic Programming. EuroGP has been joined as the main event in 2004 by EvoCOP, formerly part of EvoWorkshops, which has become the European Conference on Evolutionary Computation in Combinatorial Optimization.




Evolutionary Computation in Dynamic and Uncertain Environments


Book Description

This book compiles recent advances of evolutionary algorithms in dynamic and uncertain environments within a unified framework. The book is motivated by the fact that some degree of uncertainty is inevitable in characterizing any realistic engineering systems. Discussion includes representative methods for addressing major sources of uncertainties in evolutionary computation, including handle of noisy fitness functions, use of approximate fitness functions, search for robust solutions, and tracking moving optimums.




Advances in Evolutionary Computing


Book Description

This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.




Evolutionary Computation for Dynamic Optimization Problems


Book Description

This book provides a compilation on the state-of-the-art and recent advances of evolutionary computation for dynamic optimization problems. The motivation for this book arises from the fact that many real-world optimization problems and engineering systems are subject to dynamic environments, where changes occur over time. Key issues for addressing dynamic optimization problems in evolutionary computation, including fundamentals, algorithm design, theoretical analysis, and real-world applications, are presented. "Evolutionary Computation for Dynamic Optimization Problems" is a valuable reference to scientists, researchers, professionals and students in the field of engineering and science, particularly in the areas of computational intelligence, nature- and bio-inspired computing, and evolutionary computation.




Evolutionary Computation in Dynamic and Uncertain Environments


Book Description

This book compiles recent advances of evolutionary algorithms in dynamic and uncertain environments within a unified framework. The book is motivated by the fact that some degree of uncertainty is inevitable in characterizing any realistic engineering systems. Discussion includes representative methods for addressing major sources of uncertainties in evolutionary computation, including handle of noisy fitness functions, use of approximate fitness functions, search for robust solutions, and tracking moving optimums.




Adaptive and Natural Computing Algorithms


Book Description

The two-volume set LNCS 6593 and 6594 constitutes the refereed proceedings of the 10th International Conference on Adaptive and Natural Computing Algorithms, ICANNGA 2010, held in Ljubljana, Slovenia, in April 2010. The 83 revised full papers presented were carefully reviewed and selected from a total of 144 submissions. The first volume includes 42 papers and a plenary lecture and is organized in topical sections on neural networks and evolutionary computation.




Self-Organizing Migrating Algorithm


Book Description

This book brings together the current state of-the-art research in Self Organizing Migrating Algorithm (SOMA) as a novel population-based evolutionary algorithm, modeled on the predator-prey relationship, by its leading practitioners. As the first ever book on SOMA, this book is geared towards graduate students, academics and researchers, who are looking for a good optimization algorithm for their applications. This book presents the methodology of SOMA, covering both the real and discrete domains, and its various implementations in different research areas. The easy-to-follow and implement methodology used in the book will make it easier for a reader to implement, modify and utilize SOMA.




Optimization Techniques for Solving Complex Problems


Book Description

Real-world problems and modern optimization techniques to solve them Here, a team of international experts brings together core ideas for solving complex problems in optimization across a wide variety of real-world settings, including computer science, engineering, transportation, telecommunications, and bioinformatics. Part One—covers methodologies for complex problem solving including genetic programming, neural networks, genetic algorithms, hybrid evolutionary algorithms, and more. Part Two—delves into applications including DNA sequencing and reconstruction, location of antennae in telecommunication networks, metaheuristics, FPGAs, problems arising in telecommunication networks, image processing, time series prediction, and more. All chapters contain examples that illustrate the applications themselves as well as the actual performance of the algorithms.?Optimization Techniques for Solving Complex Problems is a valuable resource for practitioners and researchers who work with optimization in real-world settings.