Adaptive Control of Systems with Actuator Failures


Book Description

This book shows readers new ways to compensate for disturbances in control systems prolonging the intervals between time-consuming and/or expensive fault diagnosis procedures, keeping them up to date in the increasingly important field of adaptive control.




Adaptive Backstepping Control of Uncertain Systems with Actuator Failures, Subsystem Interactions, and Nonsmooth Nonlinearities


Book Description

In practice, actuators often undergo failures and various factors influence its effectiveness. Also due to the increasing complexity of large-scale systems, subsystems are often interconnected, whereas the interactions between any two subsystems are difficult to deal with. This book details a series of new methodologies of designing and analyzing adaptive backstepping control systems involving treatment on actuator failures, subsystem interactions and nonsmooth nonlinearities. Moreover, it discusses some interesting open issues in adaptive failure accommodation, decentralized adaptive control and distributed adaptive coordinated control.




Adaptive Control of Systems with Actuator Failures


Book Description

This book shows readers new ways to compensate for disturbances in control systems prolonging the intervals between time-consuming and/or expensive fault diagnosis procedures, keeping them up to date in the increasingly important field of adaptive control.




Adaptive Backstepping Control of Uncertain Systems


Book Description

This book employs the powerful and popular adaptive backstepping control technology to design controllers for dynamic uncertain systems with non-smooth nonlinearities. Various cases including systems with time-varying parameters, multi-inputs and multi-outputs, backlash, dead-zone, hysteresis and saturation are considered in design and analysis. For multi-inputs and multi-outputs systems, both centralized and decentralized controls are addressed. This book not only presents recent research results including theoretical success and practical development such as the proof of system stability and the improvement of system tracking and transient performance, but also gives self-contained coverage of fundamentals on the backstepping approach illustrated with simple examples. Detail description of methodologies for the construction of adaptive laws, feedback control laws and associated Lyapunov functions is systematically provided in each case. Approaches used for the analysis of system stability and tracking and transient performances are elaborated. Two case studies are presented to show how the presented theories are applied.




Adaptive Control of Nonsmooth Dynamic Systems


Book Description

Many of the non-smooth, non-linear phenomena covered in this well-balanced book are of vital importance in almost any field of engineering. Contributors from all over the world ensure that no one area’s slant on the subjects predominates.




Adaptive Compensation of Nonlinear Actuators for Flight Control Applications


Book Description

This book provides a basic understanding of adaptive control and its applications in Flight control. It discusses the designing of an adaptive feedback control system and analyzes this for flight control of linear and nonlinear aircraft models using synthetic jet actuators. It also discusses control methodologies and the application of control techniques which will help practicing flight control and active flow control researchers. It also covers modelling and control designs which will also benefit researchers from the background of fluid mechanics and health management of actuation systems. The unique feature of this book is characterization of synthetic jet actuator nonlinearities over a wide range of angles of attack, an adaptive compensation scheme for such nonlinearities, and a systematic framework for feedback control of aircraft dynamics with synthetic jet actuators.




Applied Nonlinear Control


Book Description

In this work, the authors present a global perspective on the methods available for analysis and design of non-linear control systems and detail specific applications. They provide a tutorial exposition of the major non-linear systems analysis techniques followed by a discussion of available non-linear design methods.




Control of Nonlinear Systems


Book Description

The book Control of Nonlinear Systems–Stability and Performance fills a crucial gap in the field of nonlinear control systems by providing a comprehensive yet accessible treatment of the subject. Unlike many existing texts that are either too complex for beginners or omit essential topics, this book strikes the right balance of mathematical rigor and practicality. The main objective of the book is to simplify and unify the existing techniques for designing and analyzing control systems for nonlinear systems. It aims to alleviate confusion and difficulty in understanding these methods, making it an invaluable resource for students, researchers, and practitioners in the field. By presenting the material in a tutorial manner, the book enhances the reader's understanding of the design and analysis of a wide range of control methods for nonlinear systems. The emphasis on stability and performance highlights the practical relevance of the concepts discussed in the book. Overall, Control of Nonlinear Systems–Stability and Performance is a valuable contribution to the field of nonlinear control systems. Its emphasis on practical applications and its accessible presentation make it an indispensable resource for engineers seeking to enhance their knowledge and skills in this important area of control theory.




Adaptive Control Tutorial


Book Description

Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index




Adaptive Control of Systems with Actuator and Sensor Nonlinearities


Book Description

The authors present an effective approach to handle some of the most common types of component imperfections encountered in industrial automation, consumer electroncis, and defence and transportation systems.