Adaptive Genetic Variation in the Wild


Book Description

Two of the great mysteries of biology yet to be explored concern the distribution and abundance of genetic variation in natural populations and the genetic architecture of complex traits. These are tied together by their relationship to natural selection and evolutionary history, and some of the keys to disclosing these secrets lie in the study of wild organisms in their natural environments. This book, featuring a superb selection of papers from leading authors, summarizes the state of current understanding about the extent of genetic variation within wild populations and the ways to monitor such variation. It proposes the idea that a fundamental objective of evolutionary ecology is necessary to predict organism, population, community, and ecosystem response to environmental change. In fact, the overall theme of the papers centers around the expression of genetic variation and how it is shaped by the action of natural selection in the natural environment. Patterns of adaptation in the past and the genetic basis of traits likely to be under selection in a dynamically changing environment is discussed along with a wide variety of techniques to test for genetic variation and its consequences, ranging from classical demography to the use of molecular markers. This book is perfect for professionals and graduate students in genetics, biology, ecology, conservation biology, and evolution.




Genetics of Adaptation


Book Description

An enduring controversy in evolutionary biology is the genetic basis of adaptation. Darwin emphasized "many slight differences" as the ultimate source of variation to be acted upon by natural selection. In the early 1900’s, this view was opposed by "Mendelian geneticists", who emphasized the importance of "macromutations" in evolution. The Modern Synthesis resolved this controversy, concluding that mutations in genes of very small effect were responsible for adaptive evolution. A decade ago, Allen Orr and Jerry Coyne reexamined the evidence for this neo-Darwinian view and found that both the theoretical and empirical basis for it were weak. Orr and Coyne encouraged evolutionary biologists to reexamine this neglected question: what is the genetic basis of adaptive evolution? In this volume, a new generation of biologists have taken up this challenge. Using advances in both molecular genetic and statistical techniques, evolutionary geneticists have made considerable progress in this emerging field. In this volume, a diversity of examples from plant and animal studies provides valuable information for those interested in the genetics and evolution of complex traits.




In the Light of Evolution


Book Description

The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.




Catecholamine Genes


Book Description

The study of the genomic regulation of catecholamine-related enzymes is a new field, emerging from the rapid advances in molecular neurobiology. This text offers detailed summaries of recent progress from the work of leading researchers in molecular genetics and enzymes. It concentrates primarily on the rate- limiting enzyme tyrosine hydroxylase, with several chapters devoted to its complex chemistry, plus an evolutionary view of its structural similarity to certain aromatic amino acid hydroxylases. The book covers the remaining three pathway enzymes and all other enzymes related to catecholamine genes.




Evolutionary Quantitative Genetics


Book Description

The impetus for this book arose out of my previous book, The Evolution of Life Histories (Roff, 1992). In that book I presented a single chapter on quanti tative genetic theory. However, as the book was concerned with the evolution of life histories and traits connected to this, the presence of quantitative genetic variation was an underlying theme throughout. Much of the focus was placed on optimality theory, for it is this approach that has proven to be extremely successful in the analysis of life history variation. But quantitative genetics cannot be ig nored, because there are some questions for which optimality approaches are inappropriate; for example, although optimality modeling can address the ques tion of the maintenance of phenotypic variation, it cannot say anything about genetic variation, on which further evolution clearly depends. The present book is, thus, a natural extension of the first. I have approached the problem not from the point of view of an animal or plant breeder but from that of one interested in understanding the evolution of quantitative traits in wild populations. The subject is large with a considerable body of theory: I generally present the assumptions underlying the analysis and the results, giving the relevant references for those interested in the intervening mathematics. My interest is in what quantitative genetics tells me about evolutionary processes; therefore, I have concentrated on areas of research most relevant to field studies.




Genetics and Analysis of Quantitative Traits


Book Description

Professors Lynch and Walsh bring together the diverse array of theoretical and empirical applications of quantitative genetics in a work that is comprehensive and accessible to anyone with a rudimentary understanding of statistics and genetics.




Population Genomics: Wildlife


Book Description

Population genomics is revolutionizing wildlife biology, conservation, and management by providing key and novel insights into genetic, population and landscape-level processes in wildlife, with unprecedented power and accuracy. This pioneering book presents the advances and potential of population genomics in wildlife, outlining key population genomics concepts and questions in wildlife biology, population genomics approaches that are specifically applicable to wildlife, and application of population genomics in wildlife population and evolutionary biology, ecology, adaptation and conservation and management. It is important for students, researchers, and wildlife professionals to understand the growing set of population genomics tools that can address issues from delineation of wildlife populations to assessing their capacity to adapt to environmental change. This book brings together leading experts in wildlife population genomics to discuss the key areas of the field, as well as challenges, opportunities and future prospects of wildlife population genomics.




Eco-Evolutionary Dynamics


Book Description

The theme of this volume is to discuss Eco-evolutionary Dynamics. - Updates and informs the reader on the latest research findings - Written by leading experts in the field - Highlights areas for future investigation




Quantitative Genetics in the Wild


Book Description

This book gathers the expertise of 30 evolutionary biologists from around the globe to highlight how applying the field of quantitative genetics - the analysis of the genetic basis of complex traits - aids in the study of wild populations.




Conservation and the Genetics of Populations


Book Description

Conservation and the Genetics of Populations gives acomprehensive overview of the essential background, concepts, andtools needed to understand how genetic information can be used todevelop conservation plans for species threatened withextinction. Provides a thorough understanding of the genetic basis ofbiological problems in conservation. Uses a balance of data and theory, and basic and appliedresearch, with examples taken from both the animal and plantkingdoms. An associated website contains example data sets and softwareprograms to illustrate population genetic processes and methods ofdata analysis. Discussion questions and problems are included at the end ofeach chapter to aid understanding. Features Guest Boxes written by leading people in the fieldincluding James F. Crow, Nancy FitzSimmons, Robert C. Lacy, MichaelW. Nachman, Michael E. Soule, Andrea Taylor, Loren H. Rieseberg,R.C. Vrijenhoek, Lisette Waits, Robin S. Waples and AndrewYoung. Supplementary information designed to support Conservationand the Genetics of Populations including: Downloadable sample chapter Answers to questions and problems Data sets illustrating problems from the book Data analysis software programs Website links An Instructor manual CD-ROM for this title is available. Pleasecontact our Higher Education team at ahref="mailto:[email protected]"[email protected]/afor more information.