Adaptive Method of Lines


Book Description

The general Method of Lines (MOL) procedure provides a flexible format for the solution of all the major classes of partial differential equations (PDEs) and is particularly well suited to evolutionary, nonlinear wave PDEs. Despite its utility, however, there are relatively few texts that explore it at a more advanced level and reflect the method's




Adaptive Moving Mesh Methods


Book Description

This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems. Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. Graduate students, researchers and practitioners working in this area will benefit from this book.




Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB


Book Description

Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB shows the reader how to exploit a fuller array of numerical methods for the analysis of complex scientific and engineering systems than is conventionally employed. The book is dedicated to numerical simulation of distributed parameter systems described by mixed systems of algebraic equations, ordinary differential equations (ODEs) and partial differential equations (PDEs). Special attention is paid to the numerical method of lines (MOL), a popular approach to the solution of time-dependent PDEs, which proceeds in two basic steps: spatial discretization and time integration. Besides conventional finite-difference and element techniques, more advanced spatial-approximation methods are examined in some detail, including nonoscillatory schemes and adaptive-grid approaches. A MOL toolbox has been developed within MATLAB®/OCTAVE/SCILAB. In addition to a set of spatial approximations and time integrators, this toolbox includes a collection of application examples, in specific areas, which can serve as templates for developing new programs. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB provides a practical introduction to some advanced computational techniques for dynamic system simulation, supported by many worked examples in the text, and a collection of codes available for download from the book’s page at www.springer.com. This text is suitable for self-study by practicing scientists and engineers and as a final-year undergraduate course or at the graduate level.




Adaptive Numerical Solution of PDEs


Book Description

This book deals with the general topic “Numerical solution of partial differential equations (PDEs)” with a focus on adaptivity of discretizations in space and time. By and large, introductory textbooks like “Numerical Analysis in Modern Scientific Computing” by Deuflhard and Hohmann should suffice as a prerequisite. The emphasis lies on elliptic and parabolic systems. Hyperbolic conservation laws are treated only on an elementary level excluding turbulence. Numerical Analysis is clearly understood as part of Scientific Computing. The focus is on the efficiency of algorithms, i.e. speed, reliability, and robustness, which directly leads to the concept of adaptivity in algorithms. The theoretical derivation and analysis is kept as elementary as possible. Nevertheless required somewhat more sophisticated mathematical theory is summarized in comprehensive form in an appendix. Complex relations are explained by numerous figures and illustrating examples. Non-trivial problems from regenerative energy, nanotechnology, surgery, and physiology are inserted. The text will appeal to graduate students and researchers on the job in mathematics, science, and technology. Conceptually, it has been written as a textbook including exercises and a software list, but at the same time it should be well-suited for self-study.







Solving PDEs in Python


Book Description

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.




Time-Dependent Problems and Difference Methods


Book Description

Praise for the First Edition ". . . fills a considerable gap in the numerical analysis literature by providing a self-contained treatment . . . this is an important work written in a clear style . . . warmly recommended to any graduate student or researcher in the field of the numerical solution of partial differential equations." —SIAM Review Time-Dependent Problems and Difference Methods, Second Edition continues to provide guidance for the analysis of difference methods for computing approximate solutions to partial differential equations for time-dependent problems. The book treats differential equations and difference methods with a parallel development, thus achieving a more useful analysis of numerical methods. The Second Edition presents hyperbolic equations in great detail as well as new coverage on second-order systems of wave equations including acoustic waves, elastic waves, and Einstein equations. Compared to first-order hyperbolic systems, initial-boundary value problems for such systems contain new properties that must be taken into account when analyzing stability. Featuring the latest material in partial differential equations with new theorems, examples, and illustrations,Time-Dependent Problems and Difference Methods, Second Edition also includes: High order methods on staggered grids Extended treatment of Summation By Parts operators and their application to second-order derivatives Simplified presentation of certain parts and proofs Time-Dependent Problems and Difference Methods, Second Edition is an ideal reference for physical scientists, engineers, numerical analysts, and mathematical modelers who use numerical experiments to test designs and to predict and investigate physical phenomena. The book is also excellent for graduate-level courses in applied mathematics and scientific computations.




Rosenbrock—Wanner–Type Methods


Book Description

This book discusses the development of the Rosenbrock—Wanner methods from the origins of the idea to current research with the stable and efficient numerical solution and differential-algebraic systems of equations, still in focus. The reader gets a comprehensive insight into the classical methods as well as into the development and properties of novel W-methods, two-step and exponential Rosenbrock methods. In addition, descriptive applications from the fields of water and hydrogen network simulation and visual computing are presented.




The Numerical Method of Lines


Book Description

This is the first book on the numerical method of lines, a relatively new method for solving partial differential equations. The Numerical Method of Lines is also the first book to accommodate all major classes of partial differential equations. This is essentially an applications book for computer scientists. The author will separately offer a disk of FORTRAN 77 programs with 250 specific applications, ranging from "Shuttle Launch Simulation" to "Temperature Control of a Nuclear Fuel Rod."




Adaptive Methods in Underwater Acoustics


Book Description

The NATO Advanced Study Institute on Adaptive Methods in Underwater Acoustics was held on 30 July - 10 August 1984 in LLineburg, Germany. The Institute was primarily concerned with signal processing for underwater appl ica tions. The majority of the presentations, when taken together, yield a definite picture of the present status of understanding of adaptive and high resolution processing, setting out the progress achieved over the past four years together with the major problem areas remaining. Major effort was made to obtain a commensurate contribution of tutorial and advanced research papers. It is my hope that the material in this volume may be equally well suited for students getting an introduction to some of the basic problems in underwater signal processing and for the professionals who may obtain an up-to-date overview of the present state of the art. This might be especially useful in view of the controversy and lack of adequate interrelationships which have marked this rapidly expanding field in the past. Practical reinforcement of this picture is provided by the material concerning digital and optical processing technology, giving some guidance to achievable adaptive and high resolution techniques with current processing devices. The formal programme was extended and detailed by a series of six evening work shops on specific topics, during which informal discussions took place among the participants. Summaries of these workshops are also included in these Proceedings.