Techniques for Adaptive Control


Book Description

Adaptive Tuning Methods of the Foxboro I/A System; The Exploitation of Adaptive Modelling in the Model Predictive Control Environment of Connoisseur; Adaptive Predictive Regulatory Control with BrainWave; Model-Free Adaptive Control; Expert-Based Adaptive Control -- ControlSoft's INTUNE Adaptive and Diagnostic Software; KnowledgeScape, an Object-oriented Real-time Adaptive Modeling and Optimization Expert Control System for the Process Industries.




Adaptive Control with Recurrent High-order Neural Networks


Book Description

The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Neural networks is one of those areas where an initial burst of enthusiasm and optimism leads to an explosion of papers in the journals and many presentations at conferences but it is only in the last decade that significant theoretical work on stability, convergence and robustness for the use of neural networks in control systems has been tackled. George Rovithakis and Manolis Christodoulou have been interested in these theoretical problems and in the practical aspects of neural network applications to industrial problems. This very welcome addition to the Advances in Industrial Control series provides a succinct report of their research. The neural network model at the core of their work is the Recurrent High Order Neural Network (RHONN) and a complete theoretical and simulation development is presented. Different readers will find different aspects of the development of interest. The last chapter of the monograph discusses the problem of manufacturing or production process scheduling.




Adaptive Markov Control Processes


Book Description

This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.




Adaptive Control Tutorial


Book Description

Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index




Practical Applications of Computational Intelligence for Adaptive Control


Book Description

Written as a result of a seven year research project using computational intelligence techniques for solving mineral processing problems at the U.S. Bureau of Mines, this book is about intelligent, adaptive process control. It brings together ideas from the field of computational intelligence , a part of the larger field of artificial intelligence, including fuzzy mathematics, genetic algorithms, and neural networks and uses these ideas to develop a generic architecture for accomplishing adaptive process control. In the development of this architecture, the requisite tools are described and then demonstrated on a number of problems. Moreover, most of the examples are of interest in industrial settings (although some simple examples are provided in the beginning so that the reader can focus on technique and not be overburdened with the complexity of the problems being solved.) The focus of Practical Applications of Computational Intelligence for Adaptive Control is on practical applications. It provides practicing engineers and scientists with the information they need to solve process control problems in industry and academia. If the reader is interested in solving difficult control problems or interested in the mechanics of basic computational intelligence techniques, then this book is an excellent place to start.




On-line Estimation and Adaptive Control of Bioreactors


Book Description

This book deals with monitoring and control of biotechnological processes. Different methods are proposed which are based on the nonlinear structure of the process and do not require any a priori knowledge of the fermentation parameters. The theoretical stability and convergence properties of the proposed algorithms are analysed and their performances are illustrated by simulation results and, in many instances, by real life experiments. The concept of software sensors is introduced; these are algorithms based on the nonlinear model of the process and designed for on-line estimation of the biological variables and/or the fermentation parameters. In order to deal with process nonstationarities and parameter uncertainties, reference is made to adaptive estimation and control techniques.The book is the result of an intensive joint research effort by the authors during the last decade. It is intended as a graduate level text for students of bioengineering as well as a reference text for scientists and engineers involved in the design and optimization of bioprocesses.




Adaptive Control Approach for Software Quality Improvement


Book Description

This book focuses on the topic of improving software quality using adaptive control approaches. As software systems grow in complexity, some of the central challenges include their ability to self-manage and adapt at run time, responding to changing user needs and environments, faults, and vulnerabilities. Control theory approaches presented in the book provide some of the answers to these challenges. The book weaves together diverse research topics (such as requirements engineering, software development processes, pervasive and autonomic computing, service-oriented architectures, on-line adaptation of software behavior, testing and QoS control) into a coherent whole. Written by world-renowned experts, this book is truly a noteworthy and authoritative reference for students, researchers and practitioners to better understand how the adaptive control approach can be applied to improve the quality of software systems. Book chapters also outline future theoretical and experimental challenges for researchers in this area.




Stable Adaptive Control and Estimation for Nonlinear Systems


Book Description

Thema dieses Buches ist die Anwendung neuronaler Netze und Fuzzy-Logic-Methoden zur Identifikation und Steuerung nichtlinear-dynamischer Systeme. Dabei werden fortgeschrittene Konzepte der herkömmlichen Steuerungstheorie mit den intuitiven Eigenschaften intelligenter Systeme kombiniert, um praxisrelevante Steuerungsaufgaben zu lösen. Die Autoren bieten viel Hintergrundmaterial; ausgearbeitete Beispiele und Übungsaufgaben helfen Studenten und Praktikern beim Vertiefen des Stoffes. Lösungen zu den Aufgaben sowie MATLAB-Codebeispiele sind ebenfalls enthalten.




Control Theory Tutorial


Book Description

This open access Brief introduces the basic principles of control theory in a concise self-study guide. It complements the classic texts by emphasizing the simple conceptual unity of the subject. A novice can quickly see how and why the different parts fit together. The concepts build slowly and naturally one after another, until the reader soon has a view of the whole. Each concept is illustrated by detailed examples and graphics. The full software code for each example is available, providing the basis for experimenting with various assumptions, learning how to write programs for control analysis, and setting the stage for future research projects. The topics focus on robustness, design trade-offs, and optimality. Most of the book develops classical linear theory. The last part of the book considers robustness with respect to nonlinearity and explicitly nonlinear extensions, as well as advanced topics such as adaptive control and model predictive control. New students, as well as scientists from other backgrounds who want a concise and easy-to-grasp coverage of control theory, will benefit from the emphasis on concepts and broad understanding of the various approaches. Electronic codes for this title can be downloaded from https://extras.springer.com/?query=978-3-319-91707-8




System Identification and Adaptive Control


Book Description

Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.