Adaptive Routing in Ad Hoc Wireless Multi-hop Networks


Book Description

Ad hoc wireless multi-hop networks (AHWMNs) are communication networks that consist entirely of wireless nodes, placed together in an ad hoc manner, i.e. with minimal prior planning. All nodes have routing capabilities, and forward data packets for other nodes in multi-hop fashion. Nodes can enter or leave the network at any time, and may be mobile, so that the network topology continuously experiences alterations during deployment. AHWMNs pose substantially different challenges to networking protocols than more traditional wired networks. These challenges arise from the dynamic and unplanned nature of these networks, from the inherent unreliability of wireless communication, from the limited resources available in terms of bandwidth, processing capacity, etc., and from the possibly large scale of these networks. Due to these different challenges, new algorithms are needed at all layers of the network protocol stack. We investigate the issue of adaptive routing in AHWMNs, using ideas from artificial intelligence (AI). Our main source of inspiration is the field of Ant Colony Optimization (ACO). This is a branch of AI that takes its inspiration from the behavior of ants in nature. ACO has been applied to a wide range of different problems, often giving state-of-the-art results. The application of ACO to the problem of routing in AHWMNs is interesting because ACO algorithms tend to provide properties such as adaptivity and robustness, which are needed to deal with the challenges present in AHWMNs. On the other hand, the field of AHWMNs forms an interesting new application domain in which the ideas of ACO can be tested and improved. In particular, we investigate the combination of ACO mechanisms with other techniques from AI to get a powerful algorithm for the problem at hand. We present the AntHocNet routing algorithm, which combines ideas from ACO routing with techniques from dynamic programming and other mechanisms taken from more traditional routing algorithms. The.




Mobile Ad Hoc Networks


Book Description

In recent years, a lot of work has been done in an effort to incorporate Swarm Intelligence (SI) techniques in building an adaptive routing protocol for Mobile Ad Hoc Networks (MANETs). Since centralized approach for routing in MANETs generally lacks in scalability and fault-tolerance, SI techniques provide a natural solution through a distributed approach for the adaptive routing for MANETs. In SI techniques, the captivating features of insects or mammals are correlated with the real world problems to find solutions. Recently, several applications of bio-inspired and nature-inspired algorithms in telecommunications and computer networks have achieved remarkable success. The main aims/objectives of this book, "Mobile Ad Hoc Networks: Bio-Inspired Quality of Service Aware Routing Protocols", are twofold; firstly it clearly distinguishes between principles of traditional routing protocols and SI based routing protocols, while explaining in detail the analogy between MANETs and SI principles. Secondly, it presents the readers with important Quality of Service (QoS) parameters and explains how SI based routing protocols achieves QoS demands of the applications. This book also gives quantitative and qualitative analysis of some of the SI based routing protocols for MANETs.




AD HOC NETWORKS


Book Description

AD HOC NETWORKS: Technologies and Protocols is a concise in-depth treatment of various constituent components of ad hoc network protocols. It reviews issues related to medium access control, scalable routing, group communications, use of directional/smart antennas, network security, and power management among other topics. The authors examine various technologies that may aid ad hoc networking including the presence of an ability to tune transmission power levels or the deployment of sophisticated smart antennae. Contributors to this volume include experts that have been active in ad hoc network research and have published in the premier conferences and journals in this subject area. AD HOC NETWORKS: Protocols and Technologies will be immensely useful as a reference work to engineers and researchers as well as to advanced level students in the areas of wireless networks, and computer networks.




Routing for Wireless Multi-Hop Networks


Book Description

The focus of this brief is to identify what unifies and what distinguishes the routing functions in four wireless multi-hop network paradigms. The brief introduces a generic routing model that can be used as a foundation of wireless multi-hop routing protocol analysis and design. It demonstrates that such model can be adopted by any wireless multi-hop routing protocol. Also presented is a glimpse of the ideal wireless multi-hop routing protocol along with several open issues.




Algorithms and Protocols for Wireless and Mobile Ad Hoc Networks


Book Description

Learn the fundamental algorithms and protocols for wireless and mobile ad hoc networks Advances in wireless networking and mobile communication technologies, coupled with the proliferation of portable computers, have led to development efforts for wireless and mobile ad hoc networks. This book focuses on several aspects of wireless ad hoc networks, particularly algorithmic methods and distributed computing with mobility and computation capabilities. It covers everything readers need to build a foundation for the design of future mobile ad hoc networks: Establishing an efficient communication infrastructure Robustness control for network-wide broadcast The taxonomy of routing algorithms Adaptive backbone multicast routing The effect of inference on routing Routing protocols in intermittently connected mobile ad hoc networks and delay tolerant networks Transport layer protocols ACK-thinning techniques for TCP in MANETs Power control protocols Power saving in solar powered WLAN mesh networks Reputation and trust-based systems Vehicular ad hoc networks Cluster interconnection in 802.15.4 beacon enabled networks The book is complemented with a set of exercises that challenge readers to test their understanding of the material. Algorithms and Protocols for Wireless and Mobile Ad Hoc Networks is appropriate as a self-study guide for electrical engineers, computer engineers, network engineers, and computer science specialists. It also serves as a valuable supplemental textbook in computer science, electrical engineering, and network engineering courses at the advanced undergraduate and graduate levels.




Adaptive Demand-Driven Multicast Routing in Multi-Hop Wireless Ad Hoc Networks


Book Description

An ad hoc network does not require any pre-existing infrastructure or configuration but is formed spontaneously by (possibly mobile) nodes that wish to communicate. Each node in the ad hoc network acts as a router and forwards packets on behalf of other nodes, allowing nodes that are not within wireless range of each other to communicate over multi-hop paths. Example ad hoc network applications include disaster relief scenarios, conference attendees who want to form a network in order to exchange documents, friends involved in a distributed outdoors game, surveillance teams composed of persons or robots exploring a dangerous area, or another planet. Previous efforts to design general-purpose on-demand multicast routing protocols for ad hoc networks have utilized periodic (non-on-demand) mechanisms within some portions of the protocol. The overall on-demand nature of such protocols derives from the fact that significant portions of their operation are active only for active multicast groups. However, the periodic mechanisms within the protocol are responsible for core routing functionality and significantly affect overall protocol performance. My thesis in this dissertation is that on-demand multicast that does not rely on periodic techniques is more efficient and performs better than multicast that utilizes such techniques. To support my thesis statement, in this dissertation I present the design and evaluation of a new multicast protocol, the Adaptive Demand-Driven Multicast Routing protocol (ADMR) for multi-hop wireless ad hoc networks. ADMR uses no periodic control packet network-wide floods, periodic neighbor sensing, or periodic routing table exchanges, and adapts its behavior based on network conditions and application sending pattern, allowing efficient detection of broken links and expiration of routing state that is no longer needed.




Ad Hoc Mobile Wireless Networks


Book Description

The authoritative guide to the state of the art in ad hoc wireless networking. Reflects the field's latest breakthroughs Covers media access, routing, service discovery, multicasting, power conservation, transport protocol, and much more Includes a complete narration of prototype implementation with communication performance results from practical field trials Introduces key applications for home, business, auto, and defense "Ad hoc" wireless networks eliminate the complexities of infrastructure setup and administration, enabling devices to create and join networks "on the fly"-anywhere, anytime, for virtually any application. The field is rapidly coming of age, reflecting powerful advances in protocols, systems, and real-world implementation experience. In Ad Hoc Mobile Wireless Networks, one of the field's leading researchers brings together these advances in a single consolidated and comprehensive archive. C.K. Toh covers all this, and more: Key challenges: device heterogeneity, diverse traffic profiles, mobility, and power conservation Routing protocols for ad hoc networks, including Associativity Based Routing (ABR) and other IETF MANET protocols Real-world implementation issues-including a complete prototype implementation Ad hoc wireless network performance: results obtained from the latest field trials Leading approaches to service discovery Addressing TCP over an ad hoc wireless network environment Support for multicast communications The role of Bluetooth and WAP Ad Hoc Mobile Wireless Networks introduces detailed application scenarios ranging from home and car to office and battlefield. C.K. Toh also introduces several of the field's leading projects, from Motorola's PIANO platform to UC Berkeley's "Smart Dust." Whether you're a researcher, scientist, implementer, consultant, technical manager, CTO, or student, you won't find a more authoritative and comprehensive guide to the new state of the art in ad hoc networking.




Secure Routing and Medium Access Protocols in Wireless Multi-hop Networks


Book Description

Doctoral Thesis / Dissertation from the year 2011 in the subject Computer Science - Internet, New Technologies, Lille 1 University (Laboratoire d'Informatique Fondamentale de Lille), course: Security in Wireless Multi-hop Networks, language: English, abstract: While the rapid proliferation of mobile devices along with the tremendous growth of various applications using wireless multi-hop networks have significantly facilitate our human life, securing and ensuring high quality services of these networks are still a primary concern. In particular, anomalous protocol operation in wireless multi-hop networks has recently received considerable attention in the research community. These relevant security issues are fundamentally different from those of wireline networks due to the special characteristics of wireless multi-hop networks, such as the limited energy resources and the lack of centralized control. These issues are extremely hard to cope with due to the absence of trust relationships between the nodes. To enhance security in wireless multi-hop networks, this dissertation addresses both MAC and routing layers misbehaviors issues, with main focuses on thwarting black hole attack in proactive routing protocols like OLSR, and greedy behavior in IEEE 802.11 MAC protocol. Our contributions are briefly summarized as follows. As for black hole attack, we analyze two types of attack scenarios: one is launched at routing layer, and the other is cross layer. We then provide comprehensive analysis on the consequences of this attack and propose effective countermeasures. As for MAC layer misbehavior, we particularly study the adaptive greedy behavior in the context of Wireless Mesh Networks (WMNs) and propose FLSAC (Fuzzy Logic based scheme to Struggle against Adaptive Cheaters) to cope with it. A new characterization of the greedy behavior in Mobile Ad Hoc Networks (MANETs) is also introduced. Finally, we design a new backoff scheme to quickly detect the greedy nodes that do not comply with IEEE 802.11 MAC protocol, together with a reaction scheme that encourages the greedy nodes to become honest rather than punishing them.




The Handbook of Ad Hoc Wireless Networks


Book Description

A relative newcomer to the field of wireless communications, ad hoc networking is growing quickly, both in its importance and its applications. With rapid advances in hardware, software, and protocols, ad hoc networks are now coming of age, and the time has come to bring together into one reference their principles, technologies, and techniques. The Handbook of Ad Hoc Wireless Networks does exactly that. Experts from around the world have joined forces to create the definitive reference for the field. From the basic concepts, techniques, systems, and protocols of wireless communication to the particulars of ad hoc network routing methods, power, connections, traffic management, and security, this handbook covers virtually every aspect of ad hoc wireless networking. It includes a section that explores several routing methods and protocols directly related to implementing ad hoc networks in a variety of applications. The benefits of ad hoc wireless networks are many, but several challenges remain. Organized for easy reference, The Handbook of Ad Hoc Wireless Networks is your opportunity to gain quick familiarity with the state of the art, have at your disposal the only complete reference on the subject available, and prepare to meet the technological and implementation challenges you'll encounter in practice.




Multi-hop Routing for Wireless Mesh Networks


Book Description

Wireless Mesh networks have the potential to provide inexpensive and quick access to the internet for military communications, surveillance, education, healthcare and disaster management. This work caters to the growing high-bandwidth demands by providing low delay and high throughput by designing efficient, robust routing algorithms for wireless mesh networks. Chapters 2 and 3 of this dissertation describe adaptive routing algorithms that opportunistically route the packets in the absence of reliable knowledge about channel statistics and the network model. We design two adaptive routing algorithms, Distributed Opportunistic Routing (d-AdaptOR) and No Regret Routing (NRR), which minimize the expected number of transmissions and thus improving the throughput. The remainder of the dissertation concerns with the design routing algorithms to avoid congestion in the network. In Chapter 4, we describe a Distributed Opportunistic Routing algorithm with Congestion Diversity (ORCD) which employs receiver diversity and minimizes end-end delay. In Chapter 5, we present the Congestion Diversity Protocol (CDP), a distributed routing protocol for 802.11-based multi-hop wireless networks that combines important aspects of shortest-path and back-pressure routing to achieve improved end-end delay performance. This work reports on a practical (hardware and software) implementation of CDP in an indoor Wi-Fi testbed.