From Prognostics and Health Systems Management to Predictive Maintenance 1


Book Description

This book addresses the steps needed to monitor health assessment systems and the anticipation of their failures: choice and location of sensors, data acquisition and processing, health assessment and prediction of the duration of residual useful life. The digital revolution and mechatronics foreshadowed the advent of the 4.0 industry where equipment has the ability to communicate. The ubiquity of sensors (300,000 sensors in the new generations of aircraft) produces a flood of data requiring us to give meaning to information and leads to the need for efficient processing and a relevant interpretation. The process of traceability and capitalization of data is a key element in the context of the evolution of the maintenance towards predictive strategies.




An Introduction to Predictive Maintenance


Book Description

This second edition of An Introduction to Predictive Maintenance helps plant, process, maintenance and reliability managers and engineers to develop and implement a comprehensive maintenance management program, providing proven strategies for regularly monitoring critical process equipment and systems, predicting machine failures, and scheduling maintenance accordingly. Since the publication of the first edition in 1990, there have been many changes in both technology and methodology, including financial implications, the role of a maintenance organization, predictive maintenance techniques, various analyses, and maintenance of the program itself. This revision includes a complete update of the applicable chapters from the first edition as well as six additional chapters outlining the most recent information available. Having already been implemented and maintained successfully in hundreds of manufacturing and process plants worldwide, the practices detailed in this second edition of An Introduction to Predictive Maintenance will save plants and corporations, as well as U.S. industry as a whole, billions of dollars by minimizing unexpected equipment failures and its resultant high maintenance cost while increasing productivity. - A comprehensive introduction to a system of monitoring critical industrial equipment - Optimize the availability of process machinery and greatly reduce the cost of maintenance - Provides the means to improve product quality, productivity and profitability of manufacturing and production plants




Reliability Growth


Book Description

A high percentage of defense systems fail to meet their reliability requirements. This is a serious problem for the U.S. Department of Defense (DOD), as well as the nation. Those systems are not only less likely to successfully carry out their intended missions, but they also could endanger the lives of the operators. Furthermore, reliability failures discovered after deployment can result in costly and strategic delays and the need for expensive redesign, which often limits the tactical situations in which the system can be used. Finally, systems that fail to meet their reliability requirements are much more likely to need additional scheduled and unscheduled maintenance and to need more spare parts and possibly replacement systems, all of which can substantially increase the life-cycle costs of a system. Beginning in 2008, DOD undertook a concerted effort to raise the priority of reliability through greater use of design for reliability techniques, reliability growth testing, and formal reliability growth modeling, by both the contractors and DOD units. To this end, handbooks, guidances, and formal memoranda were revised or newly issued to reduce the frequency of reliability deficiencies for defense systems in operational testing and the effects of those deficiencies. "Reliability Growth" evaluates these recent changes and, more generally, assesses how current DOD principles and practices could be modified to increase the likelihood that defense systems will satisfy their reliability requirements. This report examines changes to the reliability requirements for proposed systems; defines modern design and testing for reliability; discusses the contractor's role in reliability testing; and summarizes the current state of formal reliability growth modeling. The recommendations of "Reliability Growth" will improve the reliability of defense systems and protect the health of the valuable personnel who operate them.




Prognostics and Health Management of Engineering Systems


Book Description

This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application.Among the many topics discussed in-depth are:• Prognostics tutorials using least-squares• Bayesian inference and parameter estimation• Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter• Data-driven prognostics algorithms including Gaussian process regression and neural network• Comparison of different prognostics algorithms divThe authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields.




Clinical Supervision and Professional Development of the Substance Abuse Counselor


Book Description

Clinical supervision (CS) is emerging as the crucible in which counselors acquire knowledge and skills for the substance abuse (SA) treatment profession, providing a bridge between the classroom and the clinic. Supervision is necessary in the SA treatment field to improve client care, develop the professionalism of clinical personnel, and maintain ethical standards. Contents of this report: (1) CS and Prof¿l. Develop. of the SA Counselor: Basic info. about CS in the SA treatment field; Presents the ¿how to¿ of CS.; (2) An Implementation Guide for Admin.; Will help admin. understand the benefits and rationale behind providing CS for their program¿s SA counselors. Provides tools for making the tasks assoc. with implementing a CS system easier. Illustrations.




Through-life Engineering Services


Book Description

Demonstrating the latest research and analysis in the area of through-life engineering services (TES), this book utilizes case studies and expert analysis from an international array of practitioners and researchers – who together represent multiple manufacturing sectors: aerospace, railway and automotive – to maximize reader insights into the field of through-life engineering services. As part of the EPSRC Centre in Through-life Engineering Services program to support the academic and industrial community, this book presents an overview of non-destructive testing techniques and applications and provides the reader with the information needed to assess degradation and possible automation of through-life engineering service activities . The latest developments in maintenance-repair-overhaul (MRO) are presented with emphasis on cleaning technologies, repair and overhaul approaches and planning and digital assistance. The impact of these technologies on sustainable enterprises is also analyzed. This book will help to support the existing TES community and will provide future studies with a strong base from which to analyze and apply techn9olgical trends to real world examples.







Industrial AI


Book Description

This book introduces Industrial AI in multiple dimensions. Industrial AI is a systematic discipline which focuses on developing, validating and deploying various machine learning algorithms for industrial applications with sustainable performance. Combined with the state-of-the-art sensing, communication and big data analytics platforms, a systematic Industrial AI methodology will allow integration of physical systems with computational models. The concept of Industrial AI is in infancy stage and may encompass the collective use of technologies such as Internet of Things, Cyber-Physical Systems and Big Data Analytics under the Industry 4.0 initiative where embedded computing devices, smart objects and the physical environment interact with each other to reach intended goals. A broad range of Industries including automotive, aerospace, healthcare, semiconductors, energy, transportation, mining, construction, and industrial automation could harness the power of Industrial AI to gain insights into the invisible relationship of the operation conditions and further use that insight to optimize their uptime, productivity and efficiency of their operations. In terms of predictive maintenance, Industrial AI can detect incipient changes in the system and predict the remains useful life and further to optimize maintenance tasks to avoid disruption to operations.




Predictive Maintenance in Dynamic Systems


Book Description

This book provides a complete picture of several decision support tools for predictive maintenance. These include embedding early anomaly/fault detection, diagnosis and reasoning, remaining useful life prediction (fault prognostics), quality prediction and self-reaction, as well as optimization, control and self-healing techniques. It shows recent applications of these techniques within various types of industrial (production/utilities/equipment/plants/smart devices, etc.) systems addressing several challenges in Industry 4.0 and different tasks dealing with Big Data Streams, Internet of Things, specific infrastructures and tools, high system dynamics and non-stationary environments . Applications discussed include production and manufacturing systems, renewable energy production and management, maritime systems, power plants and turbines, conditioning systems, compressor valves, induction motors, flight simulators, railway infrastructures, mobile robots, cyber security and Internet of Things. The contributors go beyond state of the art by placing a specific focus on dynamic systems, where it is of utmost importance to update system and maintenance models on the fly to maintain their predictive power.




Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance


Book Description

This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.