Adaptivity and Variational Stabilization for Convection Diffusion Equations
Author : Albert Cohen
Publisher :
Page : 23 pages
File Size : 44,29 MB
Release : 2011
Category :
ISBN :
Author : Albert Cohen
Publisher :
Page : 23 pages
File Size : 44,29 MB
Release : 2011
Category :
ISBN :
Author : Gabriel R. Barrenechea
Publisher : Springer
Page : 443 pages
File Size : 38,14 MB
Release : 2016-10-03
Category : Computers
ISBN : 3319416405
This volume contains contributed survey papers from the main speakers at the LMS/EPSRC Symposium “Building bridges: connections and challenges in modern approaches to numerical partial differential equations”. This meeting took place in July 8-16, 2014, and its main purpose was to gather specialists in emerging areas of numerical PDEs, and explore the connections between the different approaches. The type of contributions ranges from the theoretical foundations of these new techniques, to the applications of them, to new general frameworks and unified approaches that can cover one, or more than one, of these emerging techniques.
Author : Götz E. Pfander
Publisher : Birkhäuser
Page : 532 pages
File Size : 30,61 MB
Release : 2015-12-08
Category : Mathematics
ISBN : 3319197495
Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.
Author : João M. F. Rodrigues
Publisher : Springer
Page : 690 pages
File Size : 30,43 MB
Release : 2019-06-07
Category : Computers
ISBN : 3030227413
The five-volume set LNCS 11536, 11537, 11538, 11539 and 11540 constitutes the proceedings of the 19th International Conference on Computational Science, ICCS 2019, held in Faro, Portugal, in June 2019. The total of 65 full papers and 168 workshop papers presented in this book set were carefully reviewed and selected from 573 submissions (228 submissions to the main track and 345 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track; Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging and Heterogeneous Systems Part III: Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Classifier Learning from Difficult Data; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Computational Science in IoT and Smart Systems Part IV: Track of Data-Driven Computational Sciences; Track of Machine Learning and Data Assimilation for Dynamical Systems; Track of Marine Computing in the Interconnected World for the Benefit of the Society; Track of Multiscale Modelling and Simulation; Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation Part V: Track of Smart Systems: Computer Vision, Sensor Networks and Machine Learning; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Track ICCS 2019 Chapter “Comparing Domain-decomposition Methods for the Parallelization of Distributed Land Surface Models” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Author :
Publisher : Springer Nature
Page : 444 pages
File Size : 21,89 MB
Release :
Category :
ISBN : 3031743709
Author : Stephan Dahlke
Publisher : Springer
Page : 446 pages
File Size : 28,56 MB
Release : 2014-11-13
Category : Mathematics
ISBN : 3319081594
In April 2007, the Deutsche Forschungsgemeinschaft (DFG) approved the Priority Program 1324 “Mathematical Methods for Extracting Quantifiable Information from Complex Systems.” This volume presents a comprehensive overview of the most important results obtained over the course of the program. Mathematical models of complex systems provide the foundation for further technological developments in science, engineering and computational finance. Motivated by the trend toward steadily increasing computer power, ever more realistic models have been developed in recent years. These models have also become increasingly complex, and their numerical treatment poses serious challenges. Recent developments in mathematics suggest that, in the long run, much more powerful numerical solution strategies could be derived if the interconnections between the different fields of research were systematically exploited at a conceptual level. Accordingly, a deeper understanding of the mathematical foundations as well as the development of new and efficient numerical algorithms were among the main goals of this Priority Program. The treatment of high-dimensional systems is clearly one of the most challenging tasks in applied mathematics today. Since the problem of high-dimensionality appears in many fields of application, the above-mentioned synergy and cross-fertilization effects were expected to make a great impact. To be truly successful, the following issues had to be kept in mind: theoretical research and practical applications had to be developed hand in hand; moreover, it has proven necessary to combine different fields of mathematics, such as numerical analysis and computational stochastics. To keep the whole program sufficiently focused, we concentrated on specific but related fields of application that share common characteristics and as such, they allowed us to use closely related approaches.
Author : Gabriel R. Barrenechea
Publisher : Springer Nature
Page : 254 pages
File Size : 22,82 MB
Release : 2020-08-11
Category : Mathematics
ISBN : 3030418006
This volume gathers papers presented at the international conference BAIL, which was held at the University of Strathclyde, Scotland from the 14th to the 22nd of June 2018. The conference gathered specialists in the asymptotic and numerical analysis of problems which exhibit layers and interfaces. Covering a wide range of topics and sharing a wealth of insights, the papers in this volume provide an overview of the latest research into the theory and numerical approximation of problems involving boundary and interior layers.
Author : Jörg Schröder
Publisher : Springer Nature
Page : 561 pages
File Size : 31,45 MB
Release : 2022-04-14
Category : Technology & Engineering
ISBN : 3030926729
This edited volume summarizes research being pursued within the DFG Priority Programme 1748: "Reliable Simulation Methods in Solid Mechanics. Development of non-standard discretisation methods, mechanical and mathematical analysis", the aim of which was to develop novel discretisation methods based e.g. on mixed finite element methods, isogeometric approaches as well as discontinuous Galerkin formulations, including a sound mathematical analysis for geometrically as well as physically nonlinear problems. The Priority Programme has established an international framework for mechanical and applied mathematical research to pursue open challenges on an inter-disciplinary level. The compiled results can be understood as state of the art in the research field and show promising ways of further research in the respective areas. The book is intended for doctoral and post-doctoral students in civil engineering, mechanical engineering, applied mathematics and physics, as well as industrial researchers interested in the field.
Author : P. Ladeveze
Publisher : Elsevier
Page : 539 pages
File Size : 36,50 MB
Release : 1998-06-23
Category : Computers
ISBN : 0080525938
Mastering modelling, and in particular numerical models, is becoming a crucial and central question in modern computational mechanics. Various tools, able to quantify the quality of a model with regard to another one taken as the reference, have been derived. Applied to computational strategies, these tools lead to new computational methods which are called "adaptive". The present book is concerned with outlining the state of the art and the latest advances in both these important areas.Papers are selected from a Workshop (Cachan 17-19 September 1997) which is the third of a series devoted to Error Estimators and Adaptivity in Computational Mechanics. The Cachan Workshop dealt with latest advances in adaptive computational methods in mechanics and their impacts on solving engineering problems. It was centered too on providing answers to simple questions such as: what is being used or can be used at present to solve engineering problems? What should be the state of art in the year 2000? What are the new questions involving error estimators and their applications?
Author : Francis X. Giraldo
Publisher : Springer Nature
Page : 559 pages
File Size : 29,39 MB
Release : 2020-10-30
Category : Mathematics
ISBN : 3030550699
This book introduces the reader to solving partial differential equations (PDEs) numerically using element-based Galerkin methods. Although it draws on a solid theoretical foundation (e.g. the theory of interpolation, numerical integration, and function spaces), the book’s main focus is on how to build the method, what the resulting matrices look like, and how to write algorithms for coding Galerkin methods. In addition, the spotlight is on tensor-product bases, which means that only line elements (in one dimension), quadrilateral elements (in two dimensions), and cubes (in three dimensions) are considered. The types of Galerkin methods covered are: continuous Galerkin methods (i.e., finite/spectral elements), discontinuous Galerkin methods, and hybridized discontinuous Galerkin methods using both nodal and modal basis functions. In addition, examples are included (which can also serve as student projects) for solving hyperbolic and elliptic partial differential equations, including both scalar PDEs and systems of equations.