Additive Manufacturing for Construction


Book Description

Additive Manufacturing for Construction reveals additive manufacturing technologies for building and construction applications. The book explores on-site and off-site construction techniques, featuring design strategies which will eliminate production difficulties and minimise assembly costs, from both academic and industrial perspectives.




Construction 4.0


Book Description

Modelled on the concept of Industry 4.0, the idea of Construction 4.0 is based on a confluence of trends and technologies that promise to reshape the way built environment assets are designed, constructed, and operated. With the pervasive use of Building Information Modelling (BIM), lean principles, digital technologies, and offsite construction, the industry is at the cusp of this transformation. The critical challenge is the fragmented state of teaching, research, and professional practice in the built environment sector. This handbook aims to overcome this fragmentation by describing Construction 4.0 in the context of its current state, emerging trends and technologies, and the people and process issues that surround the coming transformation. Construction 4.0 is a framework that is a confluence and convergence of the following broad themes discussed in this book: Industrial production (prefabrication, 3D printing and assembly, offsite manufacture) Cyber-physical systems (actuators, sensors, IoT, robots, cobots, drones) Digital and computing technologies (BIM, video and laser scanning, AI and cloud computing, big data and data analytics, reality capture, Blockchain, simulation, augmented reality, data standards and interoperability, and vertical and horizontal integration) The aim of this handbook is to describe the Construction 4.0 framework and consequently highlight the resultant processes and practices that allow us to plan, design, deliver, and operate built environment assets more effectively and efficiently by focusing on the physical-to-digital transformation and then digital-to-physical transformation. This book is essential reading for all built environment and AEC stakeholders who need to get to grips with the technological transformations currently shaping their industry, research, and teaching.




3D Concrete Printing Technology


Book Description

3D Concrete Printing Technology provides valuable insights into the new manufacturing techniques and technologies needed to produce concrete materials. In this book, the editors explain the concrete printing process for mix design and the fresh properties for the high-performance printing of concrete, along with commentary regarding their extrudability, workability and buildability. This is followed by a discussion of three large-scale 3D printings of ultra-high performance concretes, including their processing setup, computational design, printing process and materials characterization. Properties of 3D-printed fiber-reinforced Portland cement paste and its flexural and compressive strength, density and porosity and the 3D-printing of hierarchical materials is also covered. Explores the factors influencing the mechanical properties of 3D printed products out of magnesium potassium phosphate cement material Includes methods for developing Concrete Polymer Building Components for 3D Printing Provides methods for formulating geopolymers for 3D printing for construction applications




3D Materials and Construction Possibilities


Book Description

Most students will work with a plastic when making things with a 3D printer, but that is only scratching the surface of materials that can be used in these machines. This book takes a look at the different materials that can be used by 3D printers, what those materials can make, and the advantages and disadvantages for each.




3D Printing for Construction with Alternative Materials


Book Description

This book explores the latest achievements and design possibilities that 3D printing for construction (DPC) can offer, the alternative materials to natural aggregates or cement and even the 4th dimension that is already starting in this area. DPC materiality is starting to be explored in architecture as a new design language to reach not only outrageous forms but also to leverage the building process and its performance. Like Corbusier explored the concrete potentiality of concrete to release the façade and the plan, 3DPC is allowing to straighten design freedom with building performance. Industry and Scientific research are offering design professionals possibilities to start a new design movement. New paths are also starting to be tracked to reduce even more this building system footprint, stalking alternatives to Portland cement (PC). Today is already possible to build with the soil from the buildings’ ground. Leftovers from various industries are opening possibilities to decrease the PC and natural aggregates rate in printable mortars. From the industry, salt is becoming a possibility to be used in 3DPC. Sugar can ashes are improving the mortar performance reducing adjuvants. Construction and demolition waste can substitute natural aggregates and even offer new textures and color possibilities. Finally, to close this edition, the latest steps on the use of Phase Change Materials in additive manufacturing are collected to raise awareness to the next step of AM, the 4D printing.




Applications of Additive Manufacturing in the Construction Industry


Book Description

Additive Manufacturing (AM) or 3D printing, the process of fabricating components in a layer-wise fashion, has been increasingly applied in industries such as automotives and aerospace. In the 1990s, interest from the construction industry evolved through several experimental applications looking to reduce labor cost, waste material, or create complex shapes that are difficult to build using conventional construction methods. However, the full range of potential applications for construction have not been explored, and the industry’s involvement with AM is still considered at its early stages. As a first step, this thesis provides an extensive literature review of AM as it relates to the construction industry. This research identifies the most significant AM processes, compared to subtractive or formative processes, as well as some technologies and materials being used. A recommendation is given for potential advancements in applications for construction. The thesis also explores the use of typical small-scale material extrusion desktop 3D printers to print and test customized fastener-free connections. The intent of these connection tests is to explore novel ways in which AM technology can be used for structural and non-structural applications using commercial polymers. The connections were inspired by traditional wood joinery and modern proprietary connections. A four-point bending test was used to evaluate their potential structural performance in bending and to identify connection types that could be used for future investigations. Before AM can realize its full potential, interdisciplinary research is still needed to provide new materials, reliable printed parts, and new and repeatable processes. This thesis provides initial steps toward this goal by finding research gaps, identifying research trends in the area, and by exploring initial benefits and limitations for non-structural and structural applications in construction using available small-scale AM technology.




Additive Manufacturing and 3D Printing Technology


Book Description

Additive Manufacturing and 3D Printing Technology: Principles and Applications consists of the construction and working details of all modern additive manufacturing and 3D-printing technology processes and machines, while also including the fundamentals, for a well-rounded educational experience. The book is written to help the reader understand the fundamentals of the systems. This book provides a selection of additive manufacturing techniques suitable for near-term application with enough technical background to understand the domain, its applicability, and to consider variations to suit technical and organizational constraints. It highlights new innovative 3D-printing systems, presents a view of 4D printing, and promotes a vision of additive manufacturing and applications toward modern manufacturing engineering practices. With the block diagrams, self-explanatory figures, chapter exercises, and photographs of lab-developed prototypes, along with case studies, this new textbook will be useful to students studying courses in Mechanical, Production, Design, Mechatronics, and Electrical Engineering.




3D Printing and Additive Manufacturing Technologies


Book Description

This book presents a selection of papers on advanced technologies for 3D printing and additive manufacturing, and demonstrates how these technologies have changed the face of direct, digital technologies for the rapid production of models, prototypes and patterns. Because of their wide range of applications, 3D printing and additive manufacturing technologies have sparked a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across such diverse industries as consumer products, aerospace, medical devices and automotive engineering. This book will help designers, R&D personnel, and practicing engineers grasp the latest developments in the field of 3D Printing and Additive Manufacturing.




3D Printing of Concrete


Book Description

The introduction of digital manufacturing techniques, such as 3D printing applied to concrete material, opens up new perspectives on the way in which buildings are designed. Research on this theme is thriving and there is a high rate of innovation related to concrete. At the same time, the first life-size constructions made from printed concrete are emerging from the ground. This book presents state-of-the-art knowledge on the different printing processes as well as on the concrete material that must adapt to these new manufacturing techniques, such as new hardware and new printers for concrete. The possibilities in terms of architectural design are discussed as well as the pathways that remain to be uncovered. The book also explores the challenges that researchers and companies expect to overcome as they get closer to democratizing this potential revolution that is the digital manufacturing of concrete.




Construction 3D Printing


Book Description