Advanced Antenna Modeling


Book Description

Over the last two decades, computerized antenna modeling has advanced greatly. Modeling, a powerful tool in Amateur Radio, can help you to design antennas and optimize their performances.Advanced Antenna Modeling is in every respect the guide to using modeling software for designing, optimizing and evaluating antennas. It provides a detailed explanation to use EZNEC, the most popular antenna modeling program used by radio amateurs today, and thoroughly how to optimize the model with the AutoEZ application in conjunction with EZNEC.With Advanced Antenna Modeling, you can evaluate and adjust pre-designed models and create your own models. Step by step you are guided and explained to become familiarized to important functions and procedures along the way. As you progress, you'll discover the strength of modeling with the extra use of various AutoEZ features.View the book concept with the article "Using AutoEZ with Antenna Modeling" It's available on the website www.on5au.be.Dan Maguire, AC6LA -- Both the scope and depth of material in Marcel's Advanced Antenna Modeling book are truly amazing. If you enjoy modeling, as I do, reading this book will spark many thoughts of "That's very clever!" and "I had no idea that was possible!" John Devoldere, ON4UN -- I highly recommend Advanced Antenna Modeling to get experience with all the clever features AutoEZ offers. It is amazing to discover how Marcel manages to reposition a rather complex antenna structure. He is a master to explain in a clear way many other AutoEZ specific tricks.The Author, ON5AU -- From the start as radio ham, I was always interested in the know-how of antennas and most of my antennas were and still are home brew, such as cubical quads, Yagis, delta loops, multiband dipoles, ground plains, etc.




Advanced Antenna Systems for 5G Network Deployments


Book Description

Advanced Antenna Systems for 5G Network Deployments: Bridging the Gap between Theory and Practice provides a comprehensive understanding of the field of advanced antenna systems (AAS) and how they can be deployed in 5G networks. The book gives a thorough understanding of the basic technology components, the state-of-the-art multi-antenna solutions, what support 3GPP has standardized together with the reasoning, AAS performance in real networks, and how AAS can be used to enhance network deployments. - Explains how AAS features impact network performance and how AAS can be effectively used in a 5G network, based on either NR and/or LTE - Shows what AAS configurations and features to use in different network deployment scenarios, focusing on mobile broadband, but also including fixed wireless access - Presents the latest developments in multi-antenna technologies, including Beamforming, MIMO and cell shaping, along with the potential of different technologies in a commercial network context - Provides a deep understanding of the differences between mid-band and mm-Wave solutions




Advanced Millimeter-wave Technologies


Book Description

This book explains one of the hottest topics in wireless and electronic devices community, namely the wireless communication at mmWave frequencies, especially at the 60 GHz ISM band. It provides the reader with knowledge and techniques for mmWave antenna design, evaluation, antenna and chip packaging. Addresses practical engineering issues such as RF material evaluation and selection, antenna and packaging requirements, manufacturing tolerances, antenna and system interconnections, and antenna One of the first books to discuss the emerging research and application areas, particularly chip packages with integrated antennas, wafer scale mmWave phased arrays and imaging Contains a good number of case studies to aid understanding Provides the antenna and packaging technologies for the latest and emerging applications with the emphases on antenna integrations for practical applications such as wireless USB, wireless video, phase array, automobile collision avoidance radar, and imaging




Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications


Book Description

Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications Reviews advances in the design and deployment of antenna arrays for future generations of wireless communication systems, offering new solutions for the telecommunications industry Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications addresses the challenges in designing and deploying antennas and antenna arrays which deliver 6G and beyond performance with high energy efficiency and possess the capability of being immune to interference caused by different systems mounted on the same platforms. This timely and authoritative volume presents innovative solutions for developing integrated communications networks of high-gain, individually-scannable, multi-beam antennas that are reconfigurable and conformable to all platforms, thus enabling the evolving integrated land, air and space communications networks. The text begins with an up-to-date discussion of the engineering issues facing future wireless communications systems, followed by a detailed discussion of different beamforming networks for multi-beam antennas. Subsequent chapters address problems of 4G/5G antenna collocation, discuss differentially-fed antenna arrays, explore conformal transmit arrays for airborne platforms, and present latest results on fixed frequency beam scanning leaky wave antennas as well as various analogue beam synthesizing strategies. Based primarily on the authors’ extensive work in the field, including original research never before published, this important new volume: Reviews multi-beam feed networks, array decoupling and de-scattering methods Provides a systematic study on differentially fed antenna arrays that are resistant to interference caused by future multifunctional/multi-generation systems Features previously unpublished material on conformal transmit arrays based on Huygen’s metasufaces and reconfigurable leaky wave antennas Includes novel algorithms for synthesizing and optimizing thinned massive arrays, conformal arrays, frequency invariant arrays, and other future arrays Advanced Antenna Array Engineering for 6G and Beyond Wireless Communications is an invaluable resource for antenna engineers and researchers, as well as graduate and senior undergraduate students in the field.




Practical Antenna Design for Wireless Products


Book Description

This comprehensive resource covers both antenna fundamentals and practical implementation strategies, presenting antenna design with optimum performance in actual products and systems. The book helps readers bridge the gap between electromagnetic theory and its application in the design of practical antennas in real products. Practical implementation strategies in products and systems will be addressed in order to design antennas in the context of actual product environments, including PCB layout, component placement and casing design. Practical design examples on wearable electronic products are presented with a systematic approach to designing antennas for actual products. The book introduces antenna fundamentals to provide the basic concepts and necessary mathematics on electromagnetic analysis, followed by advanced antenna elements. The concept of electromagnetic simulation is presented. The advantages and disadvantages of different numerical methods in antenna modeling are also discussed. Several commercial antenna design and simulation tools are introduced, allowing hands-on practice of antenna modeling and simulation.




Modern Antenna Design


Book Description

A practical book written for engineers who design and use antennas The author has many years of hands on experience designing antennas that were used in such applications as the Venus and Mars missions of NASA The book covers all important topics of modern antenna design for communications Numerical methods will be included but only as much as are needed for practical applications




Automotive Antenna Design and Applications


Book Description

The steady evolution of wireless communication technologies continues to pave the way for the implementation of innovative services and devices in modern vehicles. These include analog and digital audio broadcasting radio, satellite radio, GPS, cell phones, and short range communication devices. Such applications require the use multiple antennas operating in different frequency ranges. Automotive Antenna Design and Applications thoroughly examines traditional and new advanced automotive antennas, including the principles, designs, and techniques used to reduce antenna dimensions without significant degradation of communication quality. The contents of this book are based on cutting-edge data collected from numerous technical papers, patents, and patent applications. It presents an overview of many commercially available automotive antennas and covers features that have become standard in automotive applications, such as printed-on car glass antennas, reduced-size helical antennas, multiband compact, printed-on dielectric and patch designs in a single package. Includes simulation examples of antenna parameters that significantly speed up the design process using software packages such as FEKO, NEC, IE3D, and Genesys Highlighting the practical aspects of antenna design, the authors present passive and active designs and describe the entire design process, including antenna simulation, prototype sample fabrication, and laboratory test measurements. The book also covers the production adjustments that can result from the demands of the real car environment. The presentation of numerous examples of passive and active automotive antennas greatly enhances this reference’s value to professionals, students, and anyone else working in the ever-evolving field of antenna design and application.




CubeSat Antenna Design


Book Description

Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL) CubeSats—nanosatellites built to standard dimensions of 10cm x 10 cm x cm—are making space-based Earth science observation and interplanetary space science affordable, accessible, and rapidly deployable for institutions such as universities and smaller space agencies around the world. CubeSat Antenna Design is an up-to-date overview of CubeSat antennas designed at NASA’s Jet Propulsion Laboratory (JPL), covering the systems engineering knowledge required to design these antennas from a radio frequency and mechanical perspective. This authoritative volume features contributions by leading experts in the field, providing insights on mission-critical design requirements for state-of-the-art CubeSat antennas and discussing their development, capabilities, and applications. The text begins with a brief introduction to CubeSats, followed by a detailed survey of low-gain, medium-gain, and high-gain antennas. Subsequent chapters cover topics including the telecommunication subsystem of Mars Cube One (MarCO), the enabling technology of Radar in a CubeSat (RainCube), the development of a one-meter mesh reflector for telecommunication at X- and Ka-band for deep space missions, and the design of multiple metasurface antennas. Written to help antenna engineers to enable new CubeSate NASA missions, this volume: Describes the selection of high-gain CubeSat antennas to address specific mission requirements and constraints for instruments or telecommunication Helps readers learn how to develop antennas for future CubeSat missions Provides key information on the effect of space environment on antennas to inform design steps Covers patch and patch array antennas, deployable reflectarray antennas, deployable mesh reflector, inflatable antennas, and metasurface antennas CubeSat Antenna Design is an important resource for antenna/microwave engineers, aerospace systems engineers, and advanced graduate and postdoctoral students wanting to learn how to design and fabricate their own antennas to address clear mission requirements.




Antenna Theory and Applications


Book Description

This comprehensive text on antenna theory explains the origin of radiation and discusses antenna parameters in-depth This book offers an in-depth coverage of fundamental antenna theory, and shows how to apply this in practice. The author discusses electromagnetic radiation and antenna characteristics such as impedance, radiation pattern, polarization, gain and efficiency. In addition, the book provides readers with the necessary tools for analyzing complex antennas and for designing new ones. Furthermore, a refresher chapter on vector algebra, including gradient, divergence and curl operation is included. Throughout the book ample examples of employing the derived theory are given and all chapters are concluded with problems, giving the reader the opportunity to test his/her acquired knowledge. Key Features: Covers the mathematical and physical background that is needed to understand electromagnetic radiation and antennas Discusses the origin of radiation and provides an in-depth explanation of antenna parameters Explores all the necessary steps in antenna analysis allowing the reader to understand and analyze new antenna structures Contains a chapter on vector algebra, which is often a stumbling block for learners in this field Includes examples and a list of problems at the end of each chapter Accompanied by a website containing solutions to the problems (for instructors) and CST modeling files (www.wiley.com/go/visser_antennas This book will serve as an invaluable reference for advanced (last year Bsc, Msc) students in antenna and RF engineering, wireless communications, electrical engineering, radio engineers and other professionals needing a reference on antenna theory. It will also be of interest to advanced/senior radio engineers, designers and developers.




Antenna Modeling for Beginners


Book Description