Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries


Book Description

Metal-air batteries (MABs) have attracted attention because of their high specific energy, low cost, and safety features. This book discusses science and technology including material selection, synthesis, characterization, and their applications in MABs. It comprehensively describes various composite bifunctional electrocatalysts, corrosion/oxidation of carbon-containing air cathode catalysts, and how improvements can be achieved in the catalytic activities of oxygen reduction reaction and oxygen evolution reaction and their durability/stability. This book also analyzes, compares, and discusses composite bifunctional electrocatalysts in the applications of MABs, matching the fast information of commercial MABs in requirements. Aimed at researchers and industry professionals, this comprehensive work provides readers with an appreciation for what bifunctional composite electrocatalysts are capable of, how this field has grown in the past decades, and how bifunctional composite electrocatalysts can significantly improve the performance of MABs. It also offers suggestions for future research directions to overcome technical challenges and further facilitate research and development in this important area.




Advanced Bifunctional Electrochemical Catalysts for Metal-Air Batteries


Book Description

Metal-air batteries (MABs) have attracted attention because of their high specific energy, low cost, and safety features. This book discusses science and technology including material selection, synthesis, characterization, and their applications in MABs. It comprehensively describes various composite bifunctional electrocatalysts, corrosion/oxidation of carbon-containing air cathode catalysts, and how improvements can be achieved in the catalytic activities of oxygen reduction reaction and oxygen evolution reaction and their durability/stability. This book also analyzes, compares, and discusses composite bifunctional electrocatalysts in the applications of MABs, matching the fast information of commercial MABs in requirements. Aimed at researchers and industry professionals, this comprehensive work provides readers with an appreciation for what bifunctional composite electrocatalysts are capable of, how this field has grown in the past decades, and how bifunctional composite electrocatalysts can significantly improve the performance of MABs. It also offers suggestions for future research directions to overcome technical challenges and further facilitate research and development in this important area.




Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries


Book Description

Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries is a comprehensive book summarizing the recent overview of these new materials developed to date. The book is motivated by research that focuses on the reduction of noble metal content in catalysts to reduce the cost associated to the entire system. Metal oxides gained significant interest in heterogeneous catalysis for basic research and industrial deployment. Metal Oxide-Based Nanostructured Electrocatalysts for Fuel Cells, Electrolyzers, and Metal-Air Batteries puts these opportunities and challenges into a broad context, discusses the recent researches and technological advances, and finally provides several pathways and guidelines that could inspire the development of ground-breaking electrochemical devices for energy production or storage. Its primary focus is how materials development is an important approach to produce electricity for key applications such as automotive and industrial. The book is appropriate for those working in academia and R&D in the disciplines of materials science, chemistry, electrochemistry, and engineering. - Includes key aspects of materials design to improve the performance of electrode materials for energy conversion and storage device applications - Reviews emerging metal oxide materials for hydrogen production, hydrogen oxidation, oxygen reduction and oxygen evolution - Discusses metal oxide electrocatalysts for water-splitting, metal-air batteries, electrolyzer, and fuel cell applications




Metal-Air Batteries


Book Description

A comprehensive overview of the research developments in the burgeoning field of metal-air batteries An innovation in battery science and technology is necessary to build better power sources for our modern lifestyle needs. One of the main fields being explored for the possible breakthrough is the development of metal-air batteries. Metal-Air Batteries: Fundamentals and Applications offers a systematic summary of the fundamentals of the technology and explores the most recent advances in the applications of metal-air batteries. Comprehensive in scope, the text explains the basics in electrochemical batteries and introduces various species of metal-air batteries. The author-a noted expert in the field-explores the development of metal-air batteries in the order of Li-air battery, sodium-air battery, zinc-air battery and Mg-O2 battery, with the focus on the Li-air battery. The text also addresses topics such as metallic anode, discharge products, parasitic reactions, electrocatalysts, mediator, and X-ray diffraction study in Li-air battery. Metal-Air Batteries provides a summary of future perspectives in the field of the metal-air batteries. This important resource: -Covers various species of metal-air batteries and their components as well as system designation -Contains groundbreaking content that reviews recent advances in the field of metal-air batteries -Focuses on the battery systems which have the greatest potential for renewable energy storage Written for electrochemists, physical chemists, materials scientists, professionals in the electrotechnical industry, engineers in power technology, Metal-Air Batteries offers a review of the fundamentals and the most recent developments in the area of metal-air batteries.




Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies


Book Description

Carbon Dioxide Reduction through Advanced Conversion and Utilization Technologies covers fundamentals, advanced conversion technologies, economic feasibility analysis, and future research directions in the field of CO2 conversion and utilization. This book emphasizes principles of various conversion technologies for CO2 reduction such as enzymatic conversion, mineralization, thermochemical, photochemical, and electrochemical processes. It addresses materials, components, assembly and manufacturing, degradation mechanisms, challenges, and development strategies. Applications of conversion technologies for CO2 reduction to produce useful fuels and chemicals in energy and industrial systems are discussed as solutions to reduce greenhouse effects and energy shortages. Particularly, the advanced materials and technology of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide cells (SOCs) are reviewed and the introduction, fundamentals, and some significant topics regarding this CO2 conversion process are discussed. This book provides a comprehensive and clear picture of advanced technologies in CO2 conversion and utilization. Written in a clear and detailed manner, it is suitable for students as well as industry professionals, researchers, and academics.




Electrochemical Energy


Book Description

Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.




Advanced Technologies for Rechargeable Batteries


Book Description

This volume covers recent advanced battery systems such as metal-ion, hybrid, and metal-air batteries. It includes an introduction to fluoride, potassium, zinc, chloride, aluminium, and iron-ion batteries; special or hybrid batteries are included, with calcium, nuclear, thermal, and lithium-magnesium hybrid batteries also explained. It summarizes the recent progress and chemistry behind the popular metal-air batteries, including a systematic overview of the components, design, and integration of these new battery technologies. Features: Covers recent battery technologies in detail, from the chemistry to advances in post-lithium-ion batteries. Various post-lithium-ion batteries are discussed in detail. Includes a section on ion batteries, exploring new types of metal-ion batteries. Focuses in each chapter on a particular battery type, including different metal-ion batteries such as zinc, potassium, aluminium, and their air version batteries. Provides authoritative coverage of scientific content via global contributing experts. This book is aimed at graduate students, researchers, and professionals in materials science, chemical and electrical engineering, and electrochemistry.




Novel Non-Precious Metal Electrocatalysts for Oxygen Electrode Reactions


Book Description

Research on alternative energy harvesting technologies, conversion and storage systems with high efficiency, cost-effective and environmentally friendly systems, such as fuel cells, rechargeable metal-air batteries, unitized regenerative cells, and water electrolyzers has been stimulated by the global demand on energy. The conversion between oxygen and water plays a key step in the development of oxygen electrodes: oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), processes activated mostly by precious metals, like platinum. Their scarcity, their prohibitive cost, and declining activity greatly hamper large-scale applications. This issue reports on novel non-precious metal electrocatalysts based on the innovative design in chemical compositions, structure, and morphology, and supports for the oxygen reaction.




Nanocarbons for Advanced Energy Conversion


Book Description

In this second volume in the first book series on nanocarbons for advanced applications the highly renowned series and volume editor has put together a top author team of internationally acclaimed experts on carbon materials. Divided into three major parts, this reference provides a current overview of the design, synthesis, and characterization of nanocarbons, such as carbon nanotubes, fullerenes, graphenes, and porous carbons for energy conversion applications. It covers such varied topics as electrocatalysts for oxygen reduction reactions in the different types of fuel cells, metal-air batteries and electrode materials for photovoltaic devices, as well as photocatalysts, electrocatalysts and photoelectrocatalysts for water splitting. Throughout, the authors highlight the unique aspects of nanocarbon materials in these fields, with a particular focus on the physico-chemical properties which lead to enhanced device performances.




Chemically Derived Graphene


Book Description

The increasing interest in graphene, due to its unique properties and potential applications, is sparking intense research into chemically derived graphene. This book provides a comprehensive overview of the recent and state-of-the-art research on chemically derived graphene materials for different applications. Starting with a brief introduction on chemically derived graphene, subsequent chapters look at various fascinating applications such as electrode materials for fuel cells, Li/Na-ion batteries, metal–air batteries and Li-S batteries, photocatalysts for degradation of pollutants and solar-to-fuels conversion, biosensing platforms, and anti-corrosion coatings. The emphasis throughout this book is on experimental studies and the unique aspects of chemically derived graphene in these fields, including novel functionalization methods, particular physicochemical properties and consequently enhanced performance. With contributions from key researchers, the book provides a detailed resource on the latest progress and the future directions of chemically derived graphene for students and researchers across materials science, chemistry, nanoengineering and related fields.