Advanced Ceramic Membranes and Applications


Book Description

This book provides a balanced blend of fundamental concepts of fabrication, characterization of conventional ceramics, extending to present the recent advances in ceramic membranes. It covers the basic concepts of ceramic membranes as well as practical and theoretical knowledge in conventional and advanced ceramic membranes combined with unorthodox ideas for novel approaches in ceramic membranes. Book includes lot of real time examples derived largely from research work by authors. Aimed at researchers, students and academics in the field of membrane engineering around the globe, it has following key features: Guides readers through manufacturing, characterizing and using low-cost ceramic technology. Provides an overview of the different types of ceramic membranes, catalytic reactors and their uses. Covers industrial application, separation and purification. Includes recent developments and advances in membrane fabrication. Discusses new raw materials for ceramic membranes.




Advanced Ceramic Membranes and Applications


Book Description

This book provides a balanced blend of fundamental concepts of fabrication, characterization of conventional ceramics, extending to present the recent advances in ceramic membranes. It covers the basic concepts of ceramic membranes as well as practical and theoretical knowledge in conventional and advanced ceramic membranes combined with unorthodox ideas for novel approaches in ceramic membranes. Book includes lot of real time examples derived largely from research work by authors. Aimed at researchers, students and academics in the field of membrane engineering around the globe, it has following key features: Guides readers through manufacturing, characterizing and using low-cost ceramic technology. Provides an overview of the different types of ceramic membranes, catalytic reactors and their uses. Covers industrial application, separation and purification. Includes recent developments and advances in membrane fabrication. Discusses new raw materials for ceramic membranes.




Ceramic Membranes


Book Description

This textbook gives a clear and coherent overview of ceramic membranes, from preparation methods all the way to applications and economics. The authors, who are known for their clear writing style, combine their expertise in environmental engineering and porous materials to cover a wide range of examples, with over 1000 references. Chapters 1, 2 and 3 give a detailed introduction to membrane synthesis, transport mechanisms, and characterisation. Building on this, Chapter 4 outlines the state-of-the-art in ceramic membrane applications, including fuel cells, water purification, gas separation, and the making of cheeses, fruit juice, wine and beer. The final chapter deals with the economics of ceramic membrane processes, using industrial case studies to examine market barriers and opportunities. Ceramics are known throughout history, but now, after thousands of years, they´re making a comeback. Indeed, they may hold the key for addressing three of today´s biggest challenges: clean energy, drinking water and air pollution. This book is a must-have for anyone who wants to enter the ceramic membranes field, or keep up-to-date with the latest developments and applications. This textbook gives a clear and coherent overview of ceramic membranes, from preparation methods all the way to applications and economics. The authors, who are known for their clear writing style, combine their expertise in environmental engineering and porous materials to cover a wide range of examples, with over 1000 references. Chapters 1, 2 and 3 give a detailed introduction to membrane synthesis, transport mechanisms, and characterisation. Building on this, Chapter 4 outlines the state-of-the-art in ceramic membrane applications, including fuel cells, water purification, gas separation, and the making of cheeses, fruit juice, wine and beer. The final chapter deals with the economics of ceramic membrane processes, using industrial case studies to examine market barriers and opportunities. Ceramics are known throughout history, but now, after thousands of years, they´re making a comeback. Indeed, they may hold the key for addressing three of today´s biggest challenges: clean energy, drinking water and air pollution. This book is a must-have for anyone who wants to enter the ceramic membranes field, or keep up-to-date with the latest developments and applications.




Ceramic Membranes for Separation and Reaction


Book Description

Ceramic Membranes for Reaction and Separation is the first single-authored guide to the developing area of ceramic membranes. Starting by documenting established procedures of ceramic membrane preparation and characterization, this title then focuses on gas separation. The final chapter covers ceramic membrane reactors;- as distributors and separators, and general engineering considerations. Chapters include key examples to illustrate membrane synthesis, characterisation and applications in industry. Theoretical principles, advantages and disadvantages of using ceramic membranes under the various conditions are discussed where applicable.




Advanced Ceramics for Energy Conversion and Storage


Book Description

In order to enable an affordable, sustainable, fossil-free future energy supply, research activities on relevant materials and related technologies have been intensified in recent years, Advanced Ceramics for Energy Conversion and Storage describes the current state-of-the-art concerning materials, properties, processes, and specific applications. Academic and industrial researchers, materials scientists, and engineers will be able to get a broad overview of the use of ceramics in energy applications, while at the same time become acquainted with the most recent developments in the field. With chapters written by recognized experts working in their respective fields the book is a valuable reference source covering the following application areas: ceramic materials and coatings for gas turbines; heat storage and exchange materials for solar thermal energy; ceramics for nuclear energy; ceramics for energy harvesting (thermoelectrics, piezoelectrics, and sunlight conversion); ceramic gas separation membranes; solid oxide fuel cells and electrolysers; and electrochemical storage in battery cells. Advanced Ceramics for Energy Conversion and Storage offers a sound base for understanding the complex requirements related to the technological fields and the ceramic materials that make them possible. The book is also suitable for people with a solid base in materials science and engineering that want to specialize in ceramics. - Presents an extensive overview of ceramic materials involved in energy conversion and storage - Updates on the tremendous progress that has been achieved in recent years - Showcases authors at the forefront of their fields, including results from the huge amount of published data - Provides a list of requirements for the materials used for each energy technology - Includes an evaluation and comparison of materials available, including their structure, properties and performance




Advances in Membrane Technologies for Water Treatment


Book Description

Advances in Membrane Technologies for Water Treatment: Materials, Processes and Applications provides a detailed overview of advanced water treatment methods involving membranes, which are increasingly seen as effective replacements for a range of conventional water treatment methods. The text begins with reviews of novel membrane materials and advances in membrane operations, then examines the processes involved with improving membrane performance. Final chapters cover the application of membrane technologies for use in water treatment, with detailed discussions on municipal wastewater and reuse in the textile and paper industries. - Provides a detailed overview of advanced water treatment methods involving membranes - Coverage includes advancements in membrane materials, improvement in membrane performance, and their applications in water treatment - Discusses the use of membrane technologies in the production of drinking water, desalination, wastewater treatment, and recovery




Advanced Materials for Membrane Fabrication and Modification


Book Description

Membranes are an energy efficient separation technology that are now the basis for many water treatment and food processing applications. However, there is the potential to improve the operating performance of these separations and to extend the application of membranes to energy production, gas separations, organic solvent-based separations, and biomedical applications through novel membrane materials. This book contains 20 chapters written by leading academic researchers on membrane fabrication and modification techniques and provides a comprehensive overview on the recent developments of membrane technology. Membranes can be manufactured from a range of materials including polymeric compounds, and ceramic materials, and both these materials are considered in the book. There are 5 chapters on water and wastewater membranes that cover the fabrication of thin film (TFC) composite membranes for nanofiltration(NF)/reverse osmosis (RO)/forward osmosis (FO) applications, stimuli responsive membranes, electrospun membranes, porous ceramic membranes, and polymeric ultrafiltration (UF) manufacture and modification. There are another 6 chapters on gas separation that consider carbon membranes, zeolite membranes, silica template and metal oxide silica membranes, TFC membranes, silica membranes, and metal organic framework (MOF) membranes. Zeolite membranes are also considered for organic solvent applications, as are solvent-resistant membranes manufactured by phase inversion, ceramic-supported composite membranes, and ceramic NF membranes. The emerging areas of membranes for energy and biomedical applications have 3 and 2 chapters, respectively. Energy applications consider ion exchange membranes for use in fuel cells, membranes for electrodialysis, and membranes for use in microbial fuel cells. For biomedical applications the chapters focus on hemodialysis membranes and redox responsive membranes.




Advanced Functional Membranes


Book Description

Functional membranes are used in food processing, sensor technology, medical and biomedical devices, desalination, waste water treatment, CO2 capture, energy production and energy storage, optoelectronics etc. The book reviews recent advances in the field and discusses challenges and perspectives. Keywords: Membrane Fabrication, Polymer Membranes, Self-Assembled Membranes, Molecular Probes, Membrane Fouling, Membrane Cleaning, Microfiltration, Ultrafiltration, Food Processing, Sensors, Medical Devices, Biomedical Applications, Desalination, Wastewater Treatment, Ion Exchange Processes, Polymeric Ceramic Membranes, Nano Holes, Fuel Cells, Lithium-Ion Batteries, Optoelectronics.




Membrane Technology and Applications


Book Description

Table of Contents Preface Acknowledgments for the first edition Acknowledgments for the second edition 1 Overview of Membrane Science and Technology 1 2 Membrane Transport Theory 15 3 Membranes and Modules 89 4 Concentration Polarization 161 5 Reverse Osmosis 191 6 Ultrafiltration 237 7 Microfiltration 275 8 Gas Separation 301 9 Pervaporation 355 10 Ion Exchange Membrane Processes - Electrodialysis 393 11 Carrier Facilitated Transport 425 12 Medical Applications of Membranes 465 13 Other Membrane Processes 491 Appendix 523 Index 535.




Membrane Processes in Separation and Purification


Book Description

The chapters of this book are based upon lectures presented at the NATO Advanced Study Institute on Membrane Processes in Separation and Purification (March 21 - April 2, 1993, Curia, Portugal), organized as a successor and update to a similar Institute that took place 10 years ago (p.M.Bungay, H.K. Lonsdale, M.N. de Pinho (Eds.): Synthetic Membranes: Science, Engineering and Applications, NATO ASI Series, Reidel, Dordrecht, 1986). The decade between the two NATO Institutes witnesses the transition from individually researched membrane processes to an applied and established membrane separation technology, as is reflected by the contents of the corresponding proceeding volumes. By and large, the first volume presents itself as a textbook on membrane processes, still valid, while the present volume focuses on areas of separation need as amenable to membrane processing: Biotechnology and Environmental Technology. Accordingly, the contributions to this volume are grouped into "Membranes in Biotechnology" (11 papers), "Membranes in Environmental Technology" (6 papers), and "New Concepts" (4 papers). This is followed by one contribution each on "Energy Requirements" and "Education", i.e., membrane processes within an academic curriculum. The book thus amounts to a state of the art of applied membrane processing and may well augment the more fundamental approach of its predecessor.