Advanced Communication and Control Methods for Future Smartgrids


Book Description

Proliferation of distributed generation and the increased ability to monitor different parts of the electrical grid offer unprecedented opportunities for consumers and grid operators. Energy can be generated near the consumption points, which decreases transmission burdens and novel control schemes can be utilized to operate the grid closer to its limits. In other words, the same infrastructure can be used at higher capacities thanks to increased efficiency. Also, new players are integrated into this grid such as smart meters with local control capabilities, electric vehicles that can act as mobile storage devices, and smart inverters that can provide auxiliary support. To achieve stable and safe operation, it is necessary to observe and coordinate all of these components in the smartgrid.




Advanced Communication and Control Methods for Future Smart Grid


Book Description

The reliability of intelligent electronic device (IED) function that ensures a particular disturbance will disconnect as fast enough from the healthy network to mitigate the effect of the fault is directly related to the reliability of the electrical system. This work aims to test the performance and comparison between the developed Light weight IED and different commercial IEDs from different vendor. The developed light weight IEDs are implemented on a microcontroller as well as on an FPGA. The test set-up is implemented by the Hardware-In-the-Loop platform. The simulation platform is OPAL-RT,Äôs eMEGASIM. The results shows the performance of the FPGA to be better than microcontroller and other commercial IEDs when comparing results.




Communication, Control and Security Challenges for the Smart Grid


Book Description

The Smart Grid is a modern electricity grid allowing for distributed, renewable intermittent generation, partly owned by consumers. This requires advanced control and communication technologies in order to provide high quality power supply and secure generation, transmission and distribution. This book outlines these emerging technologies.




Advanced Approaches, Business Models, and Novel Techniques for Management and Control of Smart Grids


Book Description

The current power system should be renovated to fulfill social and industrial requests and economic advances. Hence, providing economic, green, and sustainable energy are key goals of advanced societies. In order to meet these goals, recent features of smart grid technologies need to have the potential to improve reliability, flexibility, efficiency, and resiliency. This book aims to address the mentioned challenges by introducing advanced approaches, business models, and novel techniques for the management and control of future smart grids.




Smart Grid


Book Description

Electric power systems worldwide face radical transformation with the need to decarbonise electricity supply, replace ageing assets and harness new information and communication technologies (ICT). The Smart Grid uses advanced ICT to control next generation power systems reliably and efficiently. This authoritative guide demonstrates the importance of the Smart Grid and shows how ICT will extend beyond transmission voltages to distribution networks and customer-level operation through Smart Meters and Smart Homes. Smart Grid Technology and Applications: Clearly unravels the evolving Smart Grid concept with extensive illustrations and practical examples. Describes the spectrum of key enabling technologies required for the realisation of the Smart Grid with worked examples to illustrate the applications. Enables readers to engage with the immediate development of the power system and take part in the debate over the future Smart Grid. Introduces the constituent topics from first principles, assuming only a basic knowledge of mathematics, circuits and power systems. Brings together the expertise of a highly experienced and international author team from the UK, Sri Lanka, China and Japan. Electrical, electronics and computer engineering researchers, practitioners and consultants working in inter-disciplinary Smart Grid RD&D will significantly enhance their knowledge through this reference. The tutorial style will greatly benefit final year undergraduate and master’s students as the curriculum increasing focuses on the breadth of technologies that contribute to Smart Grid realisation.




Smart Grid and Enabling Technologies


Book Description

SMART GRID AND ENABLING TECHNOLOGIES Discover foundational topics in smart grid technology as well as an exploration of the current and future state of the industry As the relationship between fossil fuel use and climate change becomes ever clearer, the search is on for reliable, renewable and less harmful sources of energy. Sometimes called the “electronet” or the “energy Internet,” smart grids promise to integrate renewable energy, information, and communication technologies with the existing electrical grid and deliver electricity more efficiently and reliably. Smart Grid and Enabling Technologies delivers a complete vision of smart grid technology and applications, including foundational and fundamental technologies, the technology that enables smart grids, the current state of the industry, and future trends in smart energy. The book offers readers thorough discussions of modern smart grid technology, including advanced metering infrastructure, net zero energy buildings, and communication, data management, and networks in smart grids. The accomplished authors also discuss critical challenges and barriers facing the smart grid industry as well as trends likely to be of importance in its future development. Readers will also benefit from the inclusion of: A thorough introduction to smart grid architecture, including traditional grids, the fundamentals of electric power, definitions and classifications of smart grids, and the components of smart grid technology An exploration of the opportunities and challenges posed by renewable energy integration Practical discussions of power electronics in the smart grid, including power electronics converters for distributed generation, flexible alternating current transmission systems, and high voltage direct current transmission systems An analysis of distributed generation Perfect for scientists, researchers, engineers, graduate students, and senior undergraduate students studying and working with electrical power systems and communication systems. Smart Grid and Enabling Technologies will also earn a place in the libraries of economists, government planners and regulators, policy makers, and energy stakeholders working in the smart grid field.




Microgrid


Book Description

Microgrids: Advanced Control Methods and Renewable Energy System Integration demonstrates the state-of-art of methods and applications of microgrid control, with eleven concise and comprehensive chapters. The first three chapters provide an overview of the control methods of microgrid systems that is followed by a review of distributed control and management strategies for the next generation microgrids. Next, the book identifies future research directions and discusses the hierarchical power sharing control in DC Microgrids. Chapter 4 investigates the demand side management in microgrid control systems from various perspectives, followed by an outline of the operation and controls of the smart microgrids in Chapter 5. Chapter 6 deals with control of low-voltage microgrids with master/slave architecture. The final chapters explain the load-Frequency Controllers for Distributed Power System Generation Units and the issue of robust control design for VSIs, followed by a communication solution denoted as power talk. Finally, in Chapter 11, real-time implementation of distributed control for an autonomous microgrid system is performed. Addresses issues of contemporary interest to practitioners in the power engineering and management fields Focuses on the role of microgrids within the overall power system structure and attempts to clarify the main findings relating to primary and secondary control and management at the microgrid level Provides results from a quantified assessment of benefits from economic, environmental, operational, and social point-of-views Presents the hierarchical control levels manifested in microgrid operations and evaluates the principles and main functions of centralized and decentralized control




Advances in Smart Grid Power System


Book Description

Advances in Smart Grid Power System: Network, Control and Security discusses real world problems, solutions, and best practices in related fields. The book includes executable plans for smart grid systems, their network communications, tactics on protecting information, and response plans for cyber incidents. Moreover, it enables researchers and energy professionals to understand the future of energy delivery systems and security. Covering fundamental theory, mathematical formulations, practical implementations, and experimental testing procedures, this book gives readers invaluable insights into the field of power systems, their quality and reliability, their impact, and their importance in cybersecurity. Includes supporting illustrations and tables along with valuable end of chapter reference sets Provides a working guideline for the design and analysis of smart grids and their applications Features experimental testing procedures in smart grid power systems, communication networks, reliability, and cybersecurity




Communication and Networking in Smart Grids


Book Description

Appropriate for researchers, practitioners, and students alike, Communication and Networking in Smart Grids presents state-of-the-art approaches and novel technologies for communication networks in smart grids. It explains how contemporary grid networks are developed and deployed and presents a collection of cutting-edge advances to help improve current practice. Prominent researchers working on smart grids and in related fields around the world explain the fundamental aspects and applications of smart grids. Describing the role that communication and networking will play in future smart grids, they examine power delivery and the complete range of features and services available through smart grids. The book is divided into two parts: Smart Grids in General and Communications and Networks in Smart Grids. Its comprehensive coverage includes: Management of locally generated powers in micro grids Multi-perspective service management in virtual power plants Distributed algorithms for demand management and grid stability in smart grids Electric distribution grid optimizations for plug-in electric vehicles Communication technologies, networks, and strategies for practical smart grid deployments—from substations to meters Ontology-based resource description and discovery framework for low Carbon grid networks QoS in networking for smart grids Outlining an optimum method for the design of distributed electric power supply and communication networks, the book reports on key ICT system engineering trends for regional energy marketplaces supporting electric mobility. It considers the spectrum of related topics in communication, IT, and security to provide you with the understanding needed to participate in the development, design, and implementation of future smart grid communications and networks.




Control and Optimization Methods for Electric Smart Grids


Book Description

Control and Optimization Methods for Electric Smart Grids brings together leading experts in power, control and communication systems, and consolidates some of the most promising recent research in smart grid modeling, control and optimization in hopes of laying the foundation for future advances in this critical field of study. The contents comprise eighteen essays addressing wide varieties of control-theoretic problems for tomorrow’s power grid. Topics covered include control architectures for power system networks with large-scale penetration of renewable energy and plug-in vehicles, optimal demand response, new modeling methods for electricity markets, cyber-security,data analysis and wide-area control using synchronized phasor measurements.