Advanced Composites with Aluminum Alloys Matrix and Their Fabrication Processes


Book Description

This chapter introduces advanced aluminum alloy matrix composites and their manufacturing processes. In the beginning, the state of the art is characterized and the general characteristics of aluminum and its practical applications are presented, starting with the history of aluminum. The current approximate distribution of bauxite resources in the world and the production of bauxite and alumina in the leading countries of the world, as well as the production of primary and secondary aluminum and the range of aluminum end products, are presented. Aluminum alloys intended for plastic deformation and castings, and composite materials in general and with a matrix of aluminum alloys in particular, have been characterized in general. Against this background, a detailed review of the results of the Author,Äôs own research included in numerous projects and own publications on advanced composite materials, their production technology, their structure, and properties were done. The range of aluminum alloy matrices of composite materials was adequately characterized, which include AlSi12, AlSi7Mg0.3, AlMg1SiCu, AlMg3, AlMg5, and AlMg9, respectively. Composite materials tested in terms of manufacturing technology include three groups. The first group includes gas pressure infiltration with liquid aluminum alloys of suitably formed porous preforms. Porous frameworks as a reinforcement for pressure-infiltrated composite materials with a matrix of aluminum alloys are produced by three methods. Al2O3 powder with the addition of 30,Äì50% carbon fibers is uniaxially pressed, sintered, and heated to thermally degrade the carbon fibers and create the required pore sizes. In the second case, the ceramic porous skeleton is produced with the use of halloysite nanotubes HNTs by mechanical milling, press consolidation, and sintering. A third method is SLS selective laser sintering using titanium powders. Another group of manufacturing technologies is the mechanical synthesis of the mixture of AlMg1SiCu aluminum alloy powder and respectively, halloysite nanotubes HNTs in a volume fraction from 5 to 15% or multi-wall carbon nanotubes MWCNTs in a volume fraction from 0.5 to 5%, and subsequent consolidation involving plastic deformation. The third group of analyzed materials concerns composite surface layers on substrates of aluminum alloys produced by laser feathering of WC/W2C or SiC carbides. The structure and properties of the mentioned composite materials with aluminum alloys matrices are described in detail. The chapter summary provides final remarks on the importance of advanced aluminum alloy composite materials in industrial development. The importance of particular groups of engineering materials in the history and the development of the methodology for the selection of engineering materials, including the current stage of Materials 4.0, was emphasized. The importance of material design in engineering design is emphasized. Concepts of the development of societies were presented: Society 5.0 and Industry 4.0. The own concept of a holistic model of the extended Industry 4.0 was presented, taking into account advanced engineering materials and technological processes. Particular attention was paid to the importance of advanced composite materials with an aluminum alloy matrix in the context of the current stage of Industry 4.0 of the industrial revolution. Growth in the production of aluminum, its alloys, and composites with its matrix was compared with that of steel. Despite the 30 times less production, aluminum is important due to its lower density. The challenges posed by the development in the Industry 4.0 stage, including the expectations of the automotive and aviation industry, force constant progress in the development of new materials with the participation of aluminum, including the composite materials with an aluminum alloy matrix presented in this chapter.




Advanced Aluminium Composites and Alloys


Book Description

Aluminium is an engineering material of strategic importance in the current stage of Industry 4.0. This book discusses advanced composites based on aluminium alloys. It also describes pressure infiltration of gas with liquid aluminium, the mechanical synthesis of aluminium alloy powder and halloysite nanotubes (HNTs) or multi-wall carbon nanotubes (MWCNTs) consolidated by plastic deformation, selected optimization and prediction models, casting aluminium alloys containing zirconium, aluminium alloys subjected to high-speed extrusion of shapes, corrosion resistance of alloys containing lithium, machining conditions of alloys with copper and zinc additions, and more.







Aluminium Alloys and Composites


Book Description

Aluminium (Al) is a metal of great importance because of its excellent corrosion resistance, high electrical and thermal conductivity, good reflectivity, and very good recycling characteristics. The properties of heat-treatable Al-alloys can be further enhanced by the inclusion of a reinforcing phase that increases the mechanical properties of the overall composite. This book is a comprehensive guide on the different types of aluminum alloys and the new advances that have been made in developing and manufacturing aluminum alloys and composites. This text provides a comprehensive overview of the processing, formability, and chemical composition of aluminum alloys and composites. Part One is focused on evaluating the types and properties of advanced aluminum alloys and composites, while Part Two explores characterization. The advantage of this book is that it provides a detailed review of major advances that have occurred in the development and application of aluminum alloys and composites while outlining a development strategy for these materials.




Composite Fabrication on Age-Hardened Alloy using Friction Stir Processing


Book Description

This up-to-date reference text discusses the fabrication technique for strengthening of high specific strength alloys including age-hardened aluminum alloys for several industrial applications. The text presents an exhaustive overview of the materials used in the aircraft construction in general and age-hardened aluminum alloys in particular. The text discusses important concepts including surface composite fabrication using friction stir processing (FSP), FSP tools, effect of reinforcement particles, and conditions that affect strengthening during surface composite fabrication on age-hardened aluminum alloys. The text will facilitate the readers to control parameters and avoid conditions that lead to a net negative impact on the resulting composites and select the one that lead to a net gain. It will enable the readers, researchers, and professionals to plan and practice composite fabrication via FSP with a benefit of net strengthening. The understanding of specific strength of materials used in applications including aerial vehicles and manufacturing is important. The proposed text highlights importance of age-hardened alloy as one of the materials used for diverse applications. It discusses strengthening strategies of existing age-hardened aluminum alloys through composite fabrication via a solid-state FSP route. The text will help students and professionals working in the field of manufacturing, materials science, and aerospace engineering. The text discusses an important aspect of strengthening age-hardened alloy using solid-state friction stir processing for diverse applications in industries including manufacturing and aviation. It will serve as an ideal reference for graduate students, academic researchers, and professionals in the field of mechanical engineering, aerospace engineering, and materials science. It will also be helpful to the professionals working in the aviation and manufacturing industries.




Commercial Opportunities for Advanced Composites


Book Description




Unconventional Techniques for the Production of Light Alloys and Composites


Book Description

This book addresses methods used in the synthesis of light alloys and composites for industrial applications. It begins with a broad introduction to virtually all aspects of the technology of light alloys and composite materials for aircraft and aerospace applications. The basic theory of fiber and particle reinforcements; light metallic material characteristics and composite systems; components forms, and manufacturing techniques and processes are discussed. The book then progresses to describe the production of alloys and composites by unconventional techniques, such as powder metallurgy, sandwich technique, severe plastic deformation, additive manufacturing, and thermal spray, making it appropriate for researchers in both academia and industry. It will be of special interest to aerospace engineers. Provides a broad introduction to the technology used in manufacturing light alloys and composite materials; Describes the current technologies employed in synthesizing light alloys made from advanced materials; Focuses on unconventional techniques used to produce light alloys and composites in aerospace applications.




Advanced Materials


Book Description




Metal Matrix Composites


Book Description

This book covers several aspects of the synthesis of composites by the pressureless infiltration technique. It describes the methods used to obtain green preforms, such as cold pressed and hot sintering, describing the heating time, load, and time required for pressing the preforms. Additionally, wettability phenomena, which is directly related on infiltration, is extensively described. Wettability process and interfacial reactions are analyzed in many ceramic-metal systems prior to fabricate the composites. A complete description of fabrication processes for Metal Matrix Composites is included. An extensive section on structural, chemical, and mechanical characterization of composites fabricated with aluminum and magnesium alloys as matrices reinforced with titanium carbide (TiC), aluminum nitride (AlN), silicon carbide (SiC) and alumina (Al2O3) is included. Relevant techniques for joining composites, such as welding and brazing are addressed. As well as issues pertaining to the corrosion and wear of composites are discussed as well. Corrosion behavior of some composites exposed to aqueous media was analyzed. Corrosion of composites using TiC and SiC like reinforcement and Al, Ni, and some Al-Cux, Al-Mgx and Al-Cu-Li alloys like matrix is discussed extensively. The structural characterization techniques addressed include: scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), optical microscopy (OM), differential thermal analysis (DTA), high resolution transmission electron microscopy (HRTEM), and thermogravimetry analysis (TGA). Mechanical testing including hardness, elastic modulus, tension tests, and impact tests were used in the characterization of composites. Theoretical models for prediction of some mechanical properties are included too.




Advanced Manufacturing Techniques for Engineering and Engineered Materials


Book Description

As technology advances, it is imperative to stay current in the newest developments made within the engineering industry and within material sciences. Trends in manufacturing such as 3D printing, casting, welding, surface modification, computer numerical control (CNC), non-traditional, Industry 4.0 ergonomics, and hybrid machining methods must be closely examined to utilize these important resources for the betterment of society. Advanced Manufacturing Techniques for Engineering and Engineered Materials provides a unified and complete overview about the recent and emerging trends, developments, and associated technology with scope for the commercialization of techniques specific to manufacturing materials. This book also reviews the various machining methods for difficult-to-cut materials and novel materials including matrix composites. Covering topics such as agro-waste, conventional machining, and material performance, this book is an essential resource for researchers, engineers, technologists, students and professors of higher education, industry workers, entrepreneurs, researchers, and academicians.