Advanced Courses Of Mathematical Analysis Iii - Proceedings Of The Third International School


Book Description

This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of the present-day research in different areas of mathematical analysis (complex variable, harmonic analysis, real analysis and functional analysis) that holds great promise for current and future developments. These review articles are highly useful for those who want to learn about these topics, as many results scattered in the literature are reflected through the many separate papers featured herein.




Advanced Courses of Mathematical Analysis III


Book Description

This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of the present-day research in different areas of mathematical analysis (complex variable, harmonic analysis, real analysis and functional analysis) that holds great promise for current and future developments. These review articles are highly useful for those who want to learn about these topics, as many results scattered in the literature are reflected through the many separate papers featured herein.




The War of Guns and Mathematics


Book Description

For a long time, World War I has been shortchanged by the historiography of science. Until recently, World War II was usually considered as the defining event for the formation of the modern relationship between science and society. In this context, the effects of the First World War, by contrast, were often limited to the massive deaths of promising young scientists. By focusing on a few key places (Paris, Cambridge, Rome, Chicago, and others), the present book gathers studies representing a broad spectrum of positions adopted by mathematicians about the conflict, from militant pacifism to military, scientific, or ideological mobilization. The use of mathematics for war is thoroughly examined. This book suggests a new vision of the long-term influence of World War I on mathematics and mathematicians. Continuities and discontinuities in the structure and organization of the mathematical sciences are discussed, as well as their images in various milieux. Topics of research and the values with which they were defended are scrutinized. This book, in particular, proposes a more in-depth evaluation of the issue of modernity and modernization in mathematics. The issue of scientific international relations after the war is revisited by a close look at the situation in a few Allied countries (France, Britain, Italy, and the USA). The historiography has emphasized the place of Germany as the leading mathematical country before WWI and the absurdity of its postwar ostracism by the Allies. The studies presented here help explain how dramatically different prewar situations, prolonged interaction during the war, and new international postwar organizations led to attempts at redrafting models for mathematical developments.













Mathematical Reviews


Book Description




Advanced Calculus (Revised Edition)


Book Description

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.