Advanced Digital Image Processing and Its Applications in Big Data


Book Description

This book covers the technology of digital image processing in various fields with big data and their applications. Readers will understand various technologies and strategies used in digital image processing as well as handling big data, using machine-learning techniques. This book will help to improve the skills of students and researchers in such fields as engineering, agriculture, and medical imaging. There is a need to be able to understand and analyse the latest developments of digital image technology. As such, this book will cover: · Applications such as biomedical science and biometric image processing, content-based image retrieval, remote sensing, pattern recognition, shape and texture analysis · New concepts in color interpolation to produce the full color from the sub-pattern bare pattern color prevalent in today's digital cameras and other imaging devices · Image compression standards that are needed to serve diverse applications · Applications of remote sensing, medical science, traffic management, education, innovation, and analysis in agricultural design and image processing · Both soft and hard computing approaches at great length in relation to major image processing tasks · The direction and development of current and future research in many areas of image processing · A comprehensive bibliography for additional research (integrated within the framework of the book) This book focuses not only on theoretical and practical knowledge in the field but also on the traditional and latest tools and techniques adopted in image processing and data science. It also provides an indispensable guide to a wide range of basic and advanced techniques in the fields of image processing and data science.




Advanced Digital Image Processing and Its Applications in Big Data


Book Description

This book covers the technology of digital image processing in various fields with big data and their applications. Readers will understand various technologies and strategies used in digital image processing as well as handling big data, using machine-learning techniques. This book will help to improve the skills of students and researchers in such fields as engineering, agriculture, and medical imaging. There is a need to be able to understand and analyse the latest developments of digital image technology. As such, this book will cover: · Applications such as biomedical science and biometric image processing, content-based image retrieval, remote sensing, pattern recognition, shape and texture analysis · New concepts in color interpolation to produce the full color from the sub-pattern bare pattern color prevalent in today's digital cameras and other imaging devices · Image compression standards that are needed to serve diverse applications · Applications of remote sensing, medical science, traffic management, education, innovation, and analysis in agricultural design and image processing · Both soft and hard computing approaches at great length in relation to major image processing tasks · The direction and development of current and future research in many areas of image processing · A comprehensive bibliography for additional research (integrated within the framework of the book) This book focuses not only on theoretical and practical knowledge in the field but also on the traditional and latest tools and techniques adopted in image processing and data science. It also provides an indispensable guide to a wide range of basic and advanced techniques in the fields of image processing and data science.




Remote Sensing and Digital Image Processing with R


Book Description

This new textbook on remote sensing and digital image processing of natural resources includes numerous, practical problem-solving exercises and applications of sensors and satellite systems using remote sensing data collection resources, and emphasizes the free and open-source platform R. It explains basic concepts of remote sensing and multidisciplinary applications using R language and R packages, by engaging students in learning theory through hands-on, real-life projects. All chapters are structured with learning objectives, computation, questions, solved exercises, resources, and research suggestions. Features Explains the theory of passive and active remote sensing and its applications in water, soil, vegetation, and atmosphere. Covers data analysis in the free and open-source R platform, which makes remote sensing accessible to anyone with a computer. Includes case studies from different environments with free software algorithms and an R toolset for active learning and a learn-by-doing approach. Provides hands-on exercises at the end of each chapter and encourages readers to understand the potential and the limitations of the environments, remote sensing targets, and process. Explores current trends and developments in remote sensing in homework assignments with data to further explore the use of free multispectral remote sensing data, including very high spatial resolution data sources for target recognition with image processing techniques. While the focus of the book is on environmental and agriculture engineering, it can be applied widely to a variety of subjects such as physical, natural, and social sciences. Students in upper-level undergraduate or graduate programs, taking courses in remote sensing, geoprocessing, civil and environmental engineering, geosciences, environmental sciences, electrical engineering, biology, and hydrology will also benefit from the learning objectives in the book. Professionals who use remote sensing and digital processing will also find this text enlightening.




Advanced Digital Image Steganography Using LSB, PVD, and EMD: Emerging Research and Opportunities


Book Description

In the last few decades, the use of the Internet has grown tremendously, and the use of online communications has grown even more. The lack of security in private messages between individuals, however, allows hackers to collect loads of sensitive information. Modern security measures are required to prevent this attack on the world’s communication technologies. Advanced Digital Image Steganography Using LSB, PVD, and EMD: Emerging Research and Opportunities provides evolving research exploring the theoretical and practical aspects of data encryption techniques and applications within computer science. The book provides introductory knowledge on steganography and its importance, detailed analysis of how RS and PDH are performed, discussion on pixel value differencing principles, and hybrid approaches using substitution, PVD, and EMD principles. It is ideally designed for researchers and graduate and under graduate students seeking current research on the security of data during transit.




Advanced Informatics for Computing Research


Book Description

This two-volume set (CCIS 1075 and CCIS 1076) constitutes the refereed proceedings of the Third International Conference on Advanced Informatics for Computing Research, ICAICR 2019, held in Shimla, India, in June 2019. The 78 revised full papers presented were carefully reviewed and selected from 382 submissions. The papers are organized in topical sections on computing methodologies; hardware; information systems; networks; software and its engineering.




Advanced Deep Learning Methods for Biomedical Information Analysis (ADLMBIA)


Book Description

Due to numerous biomedical information sensing devices, such as Computed Tomography (CT), Magnetic Resonance (MR) Imaging, Ultrasound, Single Photon Emission Computed Tomography (SPECT), and Positron Emission Tomography (PET), to Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy, etc. a large amount of biomedical information was gathered these years. However, identifying how to develop new advanced imaging methods and computational models for efficient data processing, analysis and modelling from the collected data is important for clinical applications and to understand the underlying biological processes. Deep learning approaches have been rapidly developed in recent years, both in terms of methodologies and practical applications. Deep learning techniques provide computational models of multiple processing layers to learn and represent data with multiple levels of abstraction. Deep Learning allows to implicitly capture intricate structures of large-scale data and ideally suited to some of the hardware architectures that are currently available.




Applications of Image Processing and Soft Computing Systems in Agriculture


Book Description

The variety and abundance of qualitative characteristics of agricultural products have been the main reasons for the development of different types of non-destructive methods (NDTs). Quality control of these products is one of the most important tasks in manufacturing processes. The use of control and automation has become more widespread, and new approaches provide opportunities for production competition through new technologies. Applications of Image Processing and Soft Computing Systems in Agriculture examines applications of artificial intelligence in agriculture and the main uses of shape analysis on agricultural products such as relationships between form and genetics, adaptation, product characteristics, and product sorting. Additionally, it provides insights developed through computer vision techniques. Highlighting such topics as deep learning, agribusiness, and augmented reality, it is designed for academicians, researchers, agricultural practitioners, and industry professionals.




Cognitive Big Data Intelligence with a Metaheuristic Approach


Book Description

Cognitive Big Data Intelligence with a Metaheuristic Approach presents an exact and compact organization of content relating to the latest metaheuristics methodologies based on new challenging big data application domains and cognitive computing. The combined model of cognitive big data intelligence with metaheuristics methods can be used to analyze emerging patterns, spot business opportunities, and take care of critical process-centric issues in real-time. Various real-time case studies and implemented works are discussed in this book for better understanding and additional clarity. This book presents an essential platform for the use of cognitive technology in the field of Data Science. It covers metaheuristic methodologies that can be successful in a wide variety of problem settings in big data frameworks. - Provides a unique opportunity to present the work on the state-of-the-art of metaheuristics approach in the area of big data processing developing automated and intelligent models - Explains different, feasible applications and case studies where cognitive computing can be successfully implemented in big data analytics using metaheuristics algorithms - Provides a snapshot of the latest advances in the contribution of metaheuristics frameworks in cognitive big data applications to solve optimization problems




Big Data in Medical Image Processing


Book Description

The field of medical imaging seen rapid development over the last two decades and has consequently revolutionized the way in which modern medicine is practiced. Diseases and their symptoms are constantly changing therefore continuous updating is necessary for the data to be relevant. Diseases fall into different categories, even a small difference in symptoms may result in categorising it in a different group altogether. Thus analysing data accurately is of critical importance. This book concentrates on diagnosing diseases like cancer or tumor from different modalities of images. This book is divided into the following domains: Importance of big data in medical imaging, pre-processing, image registration, feature extraction, classification and retrieval. It is further supplemented by the medical analyst for a continuous treatment process. The book provides an automated system that could retrieve images based on user’s interest to a point of providing decision support. It will help medical analysts to take informed decisions before planning treatment and surgery. It will also be useful to researchers who are working in problems involved in medical imaging.




Digital Image Processing for Medical Applications


Book Description

Hands-on text for a first course aimed at end-users, focusing on concepts, practical issues and problem solving.