Advanced Electromagnetic Waves


Book Description

This book endeavors to give the reader a strong base in the advanced theory of electromagnetic waves and its applications, while keeping pace with research in various other disciplines that apply electrostatics/electrodynamics theory. The treatment is highly mathematical, which tends to obscure the principles involved.




Advanced Electromagnetic Wave Propagation Methods


Book Description

This textbook provides a solid foundation into the approaches used in the analysis of complex electromagnetic problems and wave propagation. The techniques discussed are essential to obtain closed-form solutions or asymptotic solutions and meet an existing need for instructors and students in electromagnetic theory.




Electromagnetic Fields and Waves


Book Description

This comprehensive introduction to classical electromagnetic theory covers the major aspects, including scalar fields, vectors, laws of Ohm, Joule, Coulomb, Faraday, Maxwell's equation, and more. With numerous diagrams and illustrations.




Advanced Electromagnetism: Foundations: Theory And Applications


Book Description

Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.




Advanced Engineering Electromagnetics


Book Description

Balanis’ second edition of Advanced Engineering Electromagnetics – a global best-seller for over 20 years – covers the advanced knowledge engineers involved in electromagnetic need to know, particularly as the topic relates to the fast-moving, continually evolving, and rapidly expanding field of wireless communications. The immense interest in wireless communications and the expected increase in wireless communications systems projects (antenna, microwave and wireless communication) points to an increase in the number of engineers needed to specialize in this field. In addition, the Instructor Book Companion Site contains a rich collection of multimedia resources for use with this text. Resources include: Ready-made lecture notes in Power Point format for all the chapters. Forty-nine MATLAB® programs to compute, plot and animate some of the wave phenomena Nearly 600 end-of-chapter problems, that's an average of 40 problems per chapter (200 new problems; 50% more than in the first edition) A thoroughly updated Solutions Manual 2500 slides for Instructors are included.




Electromagnetic Wave Propagation, Radiation, and Scattering


Book Description

One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.




Advanced Electromagnetic Computation


Book Description

Advanced Electromagnetic Computation with MATLAB® discusses commercial electromagnetic software, widely used in the industry. Algorithms of Finite Differences, Moment method, Finite Element method and Finite Difference Time Domain method are illustrated. Hand-computed simple examples and MATLAB-coded examples are used to explain the concepts behind the algorithms. Case studies of practical examples from transmission lines, waveguides, and electrostatic problems are given so students are able to develop the code and solve the problems. Two new chapters including advanced methods based on perturbation techniques and three dimensional finite element examples from radiation scattering are included.




Advanced Electromagnetism and Vacuum Physics


Book Description

This book is aimed at a large audience: scientists, engineers, professors and students wise enough to keep a critical stance whenever confronted with the chilling dogmas of contemporary physics. Readers will find a tantalizing amount of material calculated to nurture their thoughts and arouse their suspicion, to some degree at least, on the so-called validity of today's most celebrated physical theories. Contents: Wave Meaning of the Special Relativity Theory; Change of Reference Frame; Relativistic and Classical Mechanics; Experimental Tests of Special Relativity; Partial Differential Equations of Second Order; The Wave Packet Concept; Electromagnetism; Electromagnetic Induction; Amp re and Lorentz Forces; The Li(r)nardOCoWiechert Potential; Analysis of the Electromagnetic Field; Photonics Versus Electromagnetism; Radiation of Extended Sources; The Green Formulation; Wave Extinction in a Dielectric; Plasma Equation. Readership: Students and academics in advanced physics."




Theory and Computation of Electromagnetic Fields


Book Description

Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.




Classical Electromagnetic Radiation


Book Description

Newly corrected, this highly acclaimed text is suitable foradvanced physics courses. The authors present a very accessiblemacroscopic view of classical electromagnetics thatemphasizes integrating electromagnetic theory with physicaloptics. The survey follows the historical development ofphysics, culminating in the use of four-vector relativity tofully integrate electricity with magnetism.Corrected and emended reprint of the Brooks/Cole ThomsonLearning, 1994, third edition.