Advanced EPR


Book Description

Advanced EPR: Applications in Biology and Biochemistry provides an up-to-date survey of existing EPR techniques and their applications in biology and biochemistry, and also provides a wealth of ideas for future developments in instrumentation and theory. The material is broadly organized into four parts. In the first part (chapters 1 to 6) pulsed EPR is discussed in detail. The second part (chapters 7 to 12) provides detailed discussions of a number of novel and experimental methods. The third part comprises seven chapters on double-resonance techniques, five on ENDOR and two on optically- and reaction yield-detected resonance. The final part is devoted to a thorough discussion of a number of new developments in the application of EPR to various biological and biochemical problems. Advanced EPR will interest biophysicists, physical biochemists, EPR spectroscopists and others who will value the extensive treatment of pulsed EPR techniques, the discussion of new developments in EPR instrumentation, and the integration of theory and experimental details as applied to problems in biology and biochemistry.




EPR and Advanced EPR Studies of Biological Systems


Book Description

This work is written to provide a qualitative introduction, appropriate for a general science audience, to the application of pragmagnetic resonance to the determination of biomolecular dynamics. The work is also intended as a reference resource for those pursuing or contemplating research in the hydrodynamics. The work is also intended as a reference resource for those pursuing or contemplating research in the hydrodynamic characterization of components of Biosystems. Thus, the Introduction, Theory, and Methodology sections involve presentations at two levels a pictorial and intuitive presentation for the generalist and a quantitative presentation for the specialist. The sections on applications provide a critical discussion of both pure and applied research applications which yields insights into both the capabilities and limitations of the methodology. The applications sections are also of interest from the standpoint of the detailed characterization of certain Biosystems, such as erythrocytes, which have evolved from EPR measurements.




EPR Spectroscopy


Book Description

This unique, self-contained resource is the first volume on electron paramagnetic resonance (EPR) spectroscopy in the eMagRes Handbook series. The 27 chapters cover the theoretical principles, the common experimental techniques, and many important application areas of modern EPR spectroscopy. EPR Spectroscopy: Fundamentals and Methods is presented in four major parts: A: Fundamental Theory, B: Basic Techniques and Instrumentation, C: High-Resolution Pulse Techniques, and D: Special Techniques. The first part of the book gives the reader an introduction to basic continuous-wave (CW) EPR and an overview of the different magnetic interactions that can be determined by EPR spectroscopy, their associated theoretical description, and their information content. The second provides the basics of the various EPR techniques, including pulse EPR, and EPR imaging, along with the associated instrumentation. Parts C and D builds on parts A and B and offer introductory accounts of a wide range of modern advanced EPR techniques, with examples of applications. The last two parts presents most of the new advances that do not appear in most of the classical EPR textbooks that focus on CW EPR. EPR Spectroscopy: Fundamentals and Methods contains, in concise form, all the material needed to understand state-of-the-art EPR spectroscopy at the graduate school/research level, whilst the editors have ensured that it presents the topic at a level accessible to newcomers to the field and others who want to know its range of application and how to apply it.




Advances in Biomolecular EPR


Book Description

Advances in Biomolecular EPR, Volume 666 in the Methods of Enzymology series, highlights new advances in the field, with this new volume presenting interesting chapters on topics including Magnetic Resonance Characterization of Physiologically Important Metal Ion Binding Sites in the Prion and Related Proteins, The catalytic role of metal-radical/protein-based radicals in heme enzymes, Rigid Cu2+-based spin labels for the study of higher-order DNA G-quadruplex structures, Orthogonal spin labeling and membrane proteins: increasing the information content and going towards in cell applications, Spectroscopic investigation of mono- and di-Mn-containing centers in biochemistry with an emphasis on application of paramagnetic resonance techniques, and more. Additional chapters cover In Vivo pO2 Imaging of Tumors: Oxymetry with Very Low-Frequency Electron Paramagnetic Resonance, an Update, EPR contributions to understanding molybdenum-containing enzymes, EPR spectroscopy of Type I reaction centers, Characterization of a substrate-derived radical in the NosN reaction during the biosynthesis of nosiheptide, and much more. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in Methods in Enzymology series - Includes the latest information on Advances in Biomolecular EPR




Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy


Book Description

The first volume devoted entirely to Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy This valuable book provides an introduction and broad survey of topics in ESEEM spectroscopy, including the theory, instrumentation, peculiarities of ESE experiments, and analysis of experimental data with particular emphasis on orientationally disordered systems. Applications of ESEEM spectroscopy to study chemically and biologically important paramagnetic centers in single crystals, amorphous solids, and powders are discussed as well. Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy will benefit specialists in magnetic resonance spectroscopy, physicists, chemists, and biologists who use magnetic resonance in their research.




Electron Paramagnetic Resonance


Book Description

This book provides an introduction to the underlying theory, fundamentals, and applications of EPR spectroscopy, as well as new developments in the area. Knowledge of the topics presented will allow the reader to interpret of a wide range of EPR spectra, as well as help them to apply EPR techniques to problem solving in a wide range of areas: organic, inorganic, biological, and analytical chemistry; chemical physics, geophysics, and minerology. Includes updated information on high frequency and multi-frequency EPR, pulsed microwave techniques and spectra analysis, dynamic effects, relaxation phenomena, computer-based spectra simulation, biomedical aspects of EPR, and more Equips readers with sufficient knowledge of EPR techniques to go on in their specialized area of interest Provides problem sets and concise bibliographies at the end of each chapter, plus several tutorial appendices on topics like mathematical operations, quantum mechanics of angular momentum, experimental considerations.




Multifrequency Electron Paramagnetic Resonance


Book Description

Filling the gap for a systematic, authoritative, and up-to-date review of this cutting-edge technique, this book covers both low and high frequency EPR, emphasizing the importance of adopting the multifrequency approach to study paramagnetic systems in full detail by using the EPR method. In so doing, it discusses not only the underlying theory and applications, but also all recent advances -- with a final section devoted to future perspectives.




Electron Paramagnetic Resonance


Book Description

This book offers a pragmatic guide to navigating through the complex maze of EPR/ESR spectroscopy fundamentals, techniques, and applications. Written for the scientist who is new to EPR spectroscopy, the editors have prepared a volume that de-mystifies the basic fundamentals without weighting readers down with detailed physics and mathematics, and then presents clear approaches in specific application areas. The first part presents basic fundamentals and advantages of electron paramagnetic resonance spectrscopy. The second part explores severalapplication areas including chemistry, biology, medicine, materials and geology. A frequently-asked-questions sections focuses on practicalquestions, such as the size of sample, etc. It's an ideal, hands-on reference for chemists and researchers in the pharmaceutical and materials (semiconductor) industries who are looking for a basic introduction to EPR spectroscopy.




Quantitative EPR


Book Description

There is a growing need in both industrial and academic research to obtain accurate quantitative results from continuous wave (CW) electron paramagnetic resonance (EPR) experiments. This book describes various sample-related, instrument-related and software-related aspects of obtaining quantitative results from EPR expe- ments. Some speci?c items to be discussed include: selection of a reference standard, resonator considerations (Q, B ,B ), power saturation, sample position- 1 m ing, and ?nally, the blending of all the factors together to provide a calculation model for obtaining an accurate spin concentration of a sample. This book might, at ?rst glance, appear to be a step back from some of the more advanced pulsed methods discussed in recent EPR texts, but actually quantitative “routine CW EPR” is a challenging technique, and requires a thorough understa- ing of the spectrometer and the spin system. Quantitation of CW EPR can be subdivided into two main categories: (1) intensity and (2) magnetic ?eld/mic- wave frequency measurement. Intensity is important for spin counting. Both re- tive intensity quantitation of EPR samples and their absolute spin concentration of samples are often of interest. This information is important for kinetics, mechanism elucidation, and commercial applications where EPR serves as a detection system for free radicals produced in an industrial process. It is also important for the study of magnetic properties. Magnetic ?eld/microwave frequency is important for g and nuclear hyper?ne coupling measurements that re?ect the electronic structure of the radicals or metal ions.




Electron Paramagnetic Resonance Spectroscopy


Book Description

Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.