Advanced Geo-Simulation Models


Book Description

"Geosimulation has recently emerged at the intersection of Geographic Information Science, Complex Systems Theory and Computer Science. Geosimulation aims at understanding the dynamics of complex human-driven spatial systems through the use of spatially ex"




Geosimulation


Book Description

Geosimulation is hailed as ‘the next big thing’ in geographic modelling for urban studies. This book presents readers with an overview of this new and innovative field by introducing the spatial modelling environment and describing the latest research and development using cellular automata and multi-agent systems. Extensive case studies and working code is available from an associated website which demonstrate the technicalities of geosimulation, and provide readers with the tools to carry out their own modelling and testing. The first book to treat urban geosimulation explicitly, integrating socio-economic and environmental modelling approaches Provides the reader with a sound theoretical base in the science of geosimulation as well as applied material on the construction of geosimulation models Cross-references to an author-maintained associated website with downloadable working code for readers to apply the models presented in the book Visit the Author's Website for further information on Geosimulation, Geographic Automata Systems and Geographic Automata Software http://www.geosimulationbook.com




Agent-Based Models of Geographical Systems


Book Description

This unique book brings together a comprehensive set of papers on the background, theory, technical issues and applications of agent-based modelling (ABM) within geographical systems. This collection of papers is an invaluable reference point for the experienced agent-based modeller as well those new to the area. Specific geographical issues such as handling scale and space are dealt with as well as practical advice from leading experts about designing and creating ABMs, handling complexity, visualising and validating model outputs. With contributions from many of the world’s leading research institutions, the latest applied research (micro and macro applications) from around the globe exemplify what can be achieved in geographical context. This book is relevant to researchers, postgraduate and advanced undergraduate students, and professionals in the areas of quantitative geography, spatial analysis, spatial modelling, social simulation modelling and geographical information sciences.




GeoComputation, Second Edition


Book Description

A revision of Openshaw and Abrahart’s seminal work, GeoComputation, Second Edition retains influences of its originators while also providing updated, state-of-the-art information on changes in the computational environment. In keeping with the field’s development, this new edition takes a broader view and provides comprehensive coverage across the field of GeoComputation. See What’s New in the Second Edition: Coverage of ubiquitous computing, the GeoWeb, reproducible research, open access, and agent-based modelling Expanded chapter on Genetic Programming and a separate chapter developed on Evolutionary Algorithms Ten chapters updated by the same or new authors and eight new chapters added to reflect state of the art Each chapter is a stand-alone entity that covers a particular topic. You can simply dip in and out or read it from cover to cover. The opening chapter by Stan Openshaw has been preserved, with only a limited number of minor essential modifications having been enacted. This is not just a matter of respect. Openshaw’s work is eloquent, prophetic, and his overall message remains largely unchanged. In contrast to other books on this subject, GeoComputation: Second Edition supplies a state-of-the-art review of all major areas in GeoComputation with chapters written especially for this book by invited specialists. This approach helps develop and expand a computational culture, one that can exploit the ever-increasing richness of modern geographical and geospatial datasets. It also supplies an instructional guide to be kept within easy reach for regular access and when need arises.




Spatial Modelling of Flood Risk and Flood Hazards


Book Description

Floods and flash floods with hydro-meteorological and tropical cyclones are the some of the most devastating natural disasters causing massive damages to natural and man-made features. Flood hazards are a major threat to human life, properties (agricultural area, yield production, building and homes) and infrastructures (bridges, roads, railways, urban infrastructures, etc). Flood hazards susceptibility mapping (risk assessment) and modelling is an essential step for early warning systems, emergency services, prevention and mitigation of future environmental and social hazards and implementation of risk management strategies. Due to the lack of proper information, technology-based policies and strategies, mapping and modelling can often not be implemented to the best possible level. Geo-spatial techniques have enjoyed rising interest in recent decades among the earth environmental and social sciences research communities for their powerful ability to solve and understand various complex problems and develop novel approaches toward sustainable earth and human society. By linking geo-spatial computational intelligence techniques with societal and environmental-oriented problems, this book demonstrates geospatial technology approaches to data mining techniques, data analysis, modelling, risk assessment and visualization and management strategies in different aspects of flood hazards. We believe that a diverse group of academics, scientists, geographers, hydrologist, remote sensing and GIS expertise, environmentalists, meteorologists and computing experts with a common interest in geospatial sciences within the earth environmental sciences and humanistic and social sciences will find this book to be of great value.




Modeling Cities and Regions as Complex Systems


Book Description

The theory and practice of modeling cities and regions as complex, self-organizing systems, presenting widely used cellular automata-based models, theoretical discussions, and applications. Cities and regions grow (or occasionally decline), and continuously transform themselves as they do so. This book describes the theory and practice of modeling the spatial dynamics of urban growth and transformation. As cities are complex, adaptive, self-organizing systems, the most appropriate modeling framework is one based on the theory of self-organizing systems—an approach already used in such fields as physics and ecology. The book presents a series of models, most of them developed using cellular automata (CA), which are inherently spatial and computationally efficient. It also provides discussions of the theoretical, methodological, and philosophical issues that arise from the models. A case study illustrates the use of these models in urban and regional planning. Finally, the book presents a new, dynamic theory of urban spatial structure that emerges from the models and their applications. The models are primarily land use models, but the more advanced ones also show the dynamics of population and economic activities, and are integrated with models in other domains such as economics, demography, and transportation. The result is a rich and realistic representation of the spatial dynamics of a variety of urban phenomena. The book is unique in its coverage of both the general issues associated with complex self-organizing systems and the specifics of designing and implementing models of such systems.




Multi-Agent-Based Simulation X


Book Description

The LNAI series reports state-of-the-art results in artificial intelligence research, development, and education, at a high level and in both printed and electronic form. Enjoying tight cooperation with the R&D community, with numerous individuals, as well as with prestigious organizations and societies, LNAI has grown into the most comprehensive artificial intelligence research forum available. The scope of LNAI spans the whole range of artificial intelligence and intelligent information processing including interdisciplinary topics in a variety of application fields. In parallel to the printed book, each new volume is published electronically in LNCS Online.




Spatial Simulation


Book Description

A ground-up approach to explaining dynamic spatial modelling for an interdisciplinary audience. Across broad areas of the environmental and social sciences, simulation models are an important way to study systems inaccessible to scientific experimental and observational methods, and also an essential complement to those more conventional approaches. The contemporary research literature is teeming with abstract simulation models whose presentation is mathematically demanding and requires a high level of knowledge of quantitative and computational methods and approaches. Furthermore, simulation models designed to represent specific systems and phenomena are often complicated, and, as a result, difficult to reconstruct from their descriptions in the literature. This book aims to provide a practical and accessible account of dynamic spatial modelling, while also equipping readers with a sound conceptual foundation in the subject, and a useful introduction to the wide-ranging literature. Spatial Simulation: Exploring Pattern and Process is organised around the idea that a small number of spatial processes underlie the wide variety of dynamic spatial models. Its central focus on three ‘building-blocks’ of dynamic spatial models – forces of attraction and segregation, individual mobile entities, and processes of spread – guides the reader to an understanding of the basis of many of the complicated models found in the research literature. The three building block models are presented in their simplest form and are progressively elaborated and related to real world process that can be represented using them. Introductory chapters cover essential background topics, particularly the relationships between pattern, process and spatiotemporal scale. Additional chapters consider how time and space can be represented in more complicated models, and methods for the analysis and evaluation of models. Finally, the three building block models are woven together in a more elaborate example to show how a complicated model can be assembled from relatively simple components. To aid understanding, more than 50 specific models described in the book are available online at patternandprocess.org for exploration in the freely available Netlogo platform. This book encourages readers to develop intuition for the abstract types of model that are likely to be appropriate for application in any specific context. Spatial Simulation: Exploring Pattern and Process will be of interest to undergraduate and graduate students taking courses in environmental, social, ecological and geographical disciplines. Researchers and professionals who require a non-specialist introduction will also find this book an invaluable guide to dynamic spatial simulation.




Advanced Reservoir Management and Engineering


Book Description

Chapter 1. Fundamentals of Well Testing -- Chapter 2. Decline and Type-Curves Analysis -- Chapter 3. Water Influx -- Chapter 4. Unconventional Gas Reservoirs -- Chapter 5. Performance of Oil Reservoirs -- Chapter 6. Predicting Oil Reservoir Performance -- Chapter 7. Fundamentals of Enhanced Oil Recovery -- Chapter 8. Economic Analysis -- Chapter 9. Analysis of Fixed Capital Investments -- Chapter 10. Advanced Evaluation Approaches -- Chapter 11. Professionalism and Ethics.




Complex Artificial Environments


Book Description

This book explores the possibilities of applying the theories of complexity and self-organization developed to account for various phenomena in the natural science to artifacts traditionally the realm of humanities and social sciences. The emphasis of this volume is on the development of cities and the impact of these methods on urban simulation methods.