Advanced Mechanics in Robotic Systems


Book Description

Humans have always been fascinated with the concept of artificial life and the construction of machines that look and behave like people. As the field of robotics evolves, it demands continuous development of successful systems with high-performance characteristics for practical applications. Advanced Mechanics in Robotic Systems illustrates original and ambitious mechanical designs and techniques for developing new robot prototypes with successful mechanical operational skills. Case studies are focused on projects in mechatronics that have high growth expectations: humanoid robots, robotics hands, mobile robots, parallel manipulators, and human-centred robots. A good control strategy requires good mechanical design, so a chapter has also been devoted to the description of suitable methods for control architecture design. Readers of Advanced Mechanics in Robotic Systems will discover novel designs for relevant applications in robotic fields, that will be of particular interest to academic and industry-based researchers.




Advanced Dynamics Modeling, Duality and Control of Robotic Systems


Book Description

This book provides detailed fundamental theoretical reviews and preparations necessary for developing advanced dynamics modeling and control strategies for various types of robotic systems. This research book specifically addresses and discusses the uniqueness issue of representing orientation or rotation, and further proposes an innovative isometric embedding approach. The novel approach can not only reduce the dynamic formulation for robotic systems into a compact form, but it also offers a new way to realize the orientational trajectory-tracking control procedures. In addition, the book gives a comprehensive introduction to fundamentals of mathematics and physics that are required for modeling robot dynamics and developing effective control algorithms. Many computer simulations and realistic 3D animations to verify the new theories and algorithms are included in the book as well. It also presents and discusses the principle of duality involved in robot kinematics, statics, and dynamics. The duality principle can guide the dynamics modeling and analysis into a right direction for a variety of robotic systems in different types from open serial-chain to closed parallel-chain mechanisms. It intends to serve as a diversified research reference to a wide range of audience, including undergraduate juniors and seniors, graduate students, researchers, and engineers interested in the areas of robotics, control and applications.




Modern Robotics


Book Description

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.




Fundamentals of Mechanics of Robotic Manipulation


Book Description

The book explores the fundamental issues of robot mechanics for both the analysis and design of manipulations, manipulators and grippers, taking into account a central role of mechanics and mechanical structures in the development and use of robotic systems with mechatronic design. It examines manipulations that can be performed by robotic manipulators. The contents of the book are kept at a fairly practical level with the aim to teach how to model, simulate, and operate robotic mechanical systems. The chapters have been written and organized in a way that they can be red even separately, so that they can be used separately for different courses and purposes. The introduction illustrates motivations and historical developments of robotic mechanical systems. Chapter 2 describes the analysis and design of manipulations by automatic machinery and robots; chapter 3 deals with the mechanics of serial-chain manipulators with the aim to propose algorithms for analysis, simulation, and design purposes; chapter 4 introduces the mechanics of parallel manipulators; chapter 5 addresses the attention to mechanical grippers and related mechanics of grasping.




Dynamics and Control of Robotic Systems


Book Description

A comprehensive review of the principles and dynamics of robotic systems Dynamics and Control of Robotic Systems offers a systematic and thorough theoretical background for the study of the dynamics and control of robotic systems. The authors—noted experts in the field—highlight the underlying principles of dynamics and control that can be employed in a variety of contemporary applications. The book contains a detailed presentation of the precepts of robotics and provides methodologies that are relevant to realistic robotic systems. The robotic systems represented include wide range examples from classical industrial manipulators, humanoid robots to robotic surgical assistants, space vehicles, and computer controlled milling machines. The book puts the emphasis on the systematic application of the underlying principles and show how the computational and analytical tools such as MATLAB, Mathematica, and Maple enable students to focus on robotics’ principles and theory. Dynamics and Control of Robotic Systems contains an extensive collection of examples and problems and: Puts the focus on the fundamentals of kinematics and dynamics as applied to robotic systems Presents the techniques of analytical mechanics of robotics Includes a review of advanced topics such as the recursive order N formulation Contains a wide array of design and analysis problems for robotic systems Written for students of robotics, Dynamics and Control of Robotic Systems offers a comprehensive review of the underlying principles and methods of the science of robotics.




Robot Analysis


Book Description

Complete, state-of-the-art coverage of robot analysis This unique book provides the fundamental knowledge needed for understanding the mechanics of both serial and parallel manipulators. Presenting fresh and authoritative material on parallel manipulators that is not available in any other resource, it offers an in-depth treatment of position analysis, Jacobian analysis, statics and stiffness analysis, and dynamical analysis of both types of manipulators, including a discussion of industrial and research applications. It also features: * The homotopy continuation method and dialytic elimination method for solving polynomial systems that apply to robot kinematics * Numerous worked examples and problems to reinforce learning * An extensive bibliography offering many resources for more advanced study Drawing on Dr. Lung-Wen Tsai's vast experience in the field as well as recent research publications, Robot Analysis is a first-rate text for upper-level undergraduate and graduate students in mechanical engineering, electrical engineering, and computer studies, as well as an excellent desktop reference for robotics researchers working in industry or in government.




Mechanics of Robotic Manipulation


Book Description

The science and engineering of robotic manipulation. "Manipulation" refers to a variety of physical changes made to the world around us. Mechanics of Robotic Manipulation addresses one form of robotic manipulation, moving objects, and the various processes involved—grasping, carrying, pushing, dropping, throwing, and so on. Unlike most books on the subject, it focuses on manipulation rather than manipulators. This attention to processes rather than devices allows a more fundamental approach, leading to results that apply to a broad range of devices, not just robotic arms. The book draws both on classical mechanics and on classical planning, which introduces the element of imperfect information. The book does not propose a specific solution to the problem of manipulation, but rather outlines a path of inquiry.




Advanced Mechanical Science and Technology for the Industrial Revolution 4.0


Book Description

This book includes more than 30 papers from the first FZU-OPU-NTOU Joint Symposium on Advanced Mechanical Science and Technology for the Industrial Revolution 4.0, held at Fuzhou University, China, in December 2016. The symposium was organized by Fuzhou University (FZU), Osaka Prefecture University (OPU) and National Taiwan Ocean University (NTOU). The authors include several professors from universities in China, Japan, and Taiwan as well as four distinguished invited professors from Canada, Korea, Japan, and Taiwan. The book covers all important aspects related to the 4.0 industrial revolution: robotics and mechatronics; sensors, measurements, and instrumentation; mechanical dynamics and controls; mechanical design; vehicle systems and technologies; fluid mechanics; monitoring and diagnosis, prognosis, and health management; advanced signal processing; and big data; all of which are subjects with great potential in the field of mechanical engineering.




Parallel Robots


Book Description

Parallel structures are more effective than serial ones for industrial automation applications that require high precision and stiffness, or a high load capacity relative to robot weight. Although many industrial applications have adopted parallel structures for their design, few textbooks introduce the analysis of such robots in terms of dynamics




Fundamentals of Robotic Mechanical Systems


Book Description

Modern robotics dates from the late 1960s, when progress in the development of microprocessors made possible the computer control of a multiaxial manipulator. Since then, robotics has evolved to connect with many branches of science and engineering, and to encompass such diverse fields as computer vision, artificial intelligence, and speech recognition. This book deals with robots - such as remote manipulators, multifingered hands, walking machines, flight simulators, and machine tools - that rely on mechanical systems to perform their tasks. It aims to establish the foundations on which the design, control and implementation of the underlying mechanical systems are based. The treatment assumes familiarity with some calculus, linear algebra, and elementary mechanics; however, the elements of rigid-body mechanics and of linear transformations are reviewed in the first chapters, making the presentation self-contained. An extensive set of exercises is included. Topics covered include: kinematics and dynamics of serial manipulators with decoupled architectures; trajectory planning; determination of the angular velocity and angular acceleration of a rigid body from point data; inverse and direct kinematics manipulators; dynamics of general parallel manipulators of the platform type; and the kinematics and dynamics of rolling robots. Since the publication of the previous edition there have been numerous advances in both the applications of robotics (including in laprascopy, haptics, manufacturing, and most notably space exploration) as well as in the theoretical aspects (for example, the proof that Husty's 40th-degree polynomial is indeed minimal - mentioned as an open question in the previous edition).