Advanced Multi-Phase Flow Cfd Model Development for Solid Rocket Motor Flowfield Analysis


Book Description

A Navier-Stokes code, finite difference Navier-Stokes (FDNS), is used to analyze the complicated internal flowfield of the SRM (solid rocket motor) to explore the impacts due to the effects of chemical reaction, particle dynamics, and slag accumulation on the solid rocket motor (SRM). The particulate multi-phase flowfield with chemical reaction, particle evaporation, combustion, breakup, and agglomeration models are included in present study to obtain a better understanding of the SRM design. Finite rate chemistry model is applied to simulate the chemical reaction effects. Hermsen correlation model is used for the combustion simulation. The evaporation model introduced by Spalding is utilized to include the heat transfer from the particulate phase to the gase phase due to the evaporation of the particles. A correlation of the minimum particle size for breakup expressed in terms of the Al/Al2O3 surface tension and shear force was employed to simulate the breakup of particles. It is assumed that the breakup occurs when the Weber number exceeds 6. A simple L agglomeration model is used to investigate the particle agglomeration. However, due to the large computer memory requirements for the agglomeration model, only 2D cases are tested with the agglomeration model. The VOF (Volume of Fluid) method is employed to simulate the slag buildup in the aft-end cavity of the redesigned solid rocket motor (RSRM). Monte Carlo method is employed to calculate the turbulent dispersion effect of the particles. The flowfield analysis obtained using the FDNS code in the present research with finite rate chemical reaction, particle evaporation, combustion, breakup, agglomeration, and VOG models will provide a design guide for the potential improvement of the SRM including the use of materials and the shape of nozzle geometry such that a better performance of the SRM can be achieved. The simulation of the slag buildup in the aft-end cavity can assist the designer to improve the design of ...




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.













Computational Techniques for Multiphase Flows


Book Description

Mixed or multiphase flows of solid/liquid or solid/gas are commonly found in many industrial fields, and their behavior is complex and difficult to predict in many cases. The use of computational fluid dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries. Computational Techniques for Multiphase Flows enables scientists and engineers to the undertand the basis and application of CFD in muliphase flow, explains how to use the technique, when to use it and how to interpret the results and apply them to improving aplications in process enginering and other multiphase application areas including the pumping, automotive and energy sectors. - Understandable guide to a complex subject - Important in many industries - Ideal for potential users of CFD




Computational Fluid Dynamics (CFD) Simulation of a Gas-Solid Fluidized Bed. Residence Time Validation Study


Book Description

Academic Paper from the year 2021 in the subject Physics - Mechanics, , language: English, abstract: In this study, numerical simulations of a gas-solid fluidized bed reactor involving a two-fluid Eulerian multiphase model and incorporating the Kinetic Theory of Granular Flow (KTGF) for the solids phase have been performed using a commercial Computational Fluid Dynamics (CFD) software. The fluidized bed setup consists of 1,5 m height and 0,2 m diameter in which a series of experiments were performed using Helium tracer to determine the Residence Time Distribution (RTD) at various normalized velocities i.e., with different degrees of gas-solids mixing. Both 2D and 3D simulations of the fluidized bed reactor are performed. The main purpose of this study is to understand the hydrodynamic behavior of a gas-solid fluidized bed reactor through a framework of Eulerian multiphase model and to analyze hydrodynamic behavior of the gas-solids mixing.




Coupled CFD-DEM Modeling


Book Description

Discusses the CFD-DEM method of modeling which combines both the Discrete Element Method and Computational Fluid Dynamics to simulate fluid-particle interactions. Deals with both theoretical and practical concepts of CFD-DEM, its numerical implementation accompanied by a hands-on numerical code in FORTRAN Gives examples of industrial applications







Computational Methods in Multiphase Flow VIII


Book Description

This book presents the latest research in one of the most challenging, yet most universally applicable areas of technology. Multiphase flows are found in all areas of technology, at all length scales and flow regimes, involving compressible or incompressible linear or nonlinear fluids. The range of related problems of interest is vast, including astrophysics, biology, geophysics, atmospheric process, and many areas of engineering. The solution of the equations that describe such complex problems often requires a combination of advanced computational and experimental methods. For example, any models developed must be validated through the application of expensive and difficult experimental techniques. Numerous problems in the area thus remain as yet unsolved, including modelling nonlinear fluids, modelling and tracking interfaces, dealing with multiple length scales, characterising phase structures, and treating drop break-up and coalescence. The papers contained in the book were presented at the eighth in a well established series of biennial conferences that began in 2001. They represent close interaction between numerical modellers and other researchers working to gradually resolve the many outstanding issues in understanding of multiphase flow. The papers in the book cover such topics as: Multiphase Flow Simulation; Bubble and Drop Dynamics; Interface Behaviour; Experimental Measurements; Energy Applications; Compressible Flows; Flow in Porous Media; Turbulent Flow; Image Processing; Heat Transfer; Atomization; Hydromagnetics; Plasma; Fluidised Beds; Cavitation.