Advanced Optimization by Nature-Inspired Algorithms


Book Description

This book, compiles, presents, and explains the most important meta-heuristic and evolutionary optimization algorithms whose successful performance has been proven in different fields of engineering, and it includes application of these algorithms to important engineering optimization problems. In addition, this book guides readers to studies that have implemented these algorithms by providing a literature review on developments and applications of each algorithm. This book is intended for students, but can be used by researchers and professionals in the area of engineering optimization.




Nature-Inspired Methods for Metaheuristics Optimization


Book Description

This book gathers together a set of chapters covering recent development in optimization methods that are inspired by nature. The first group of chapters describes in detail different meta-heuristic algorithms, and shows their applicability using some test or real-world problems. The second part of the book is especially focused on advanced applications and case studies. They span different engineering fields, including mechanical, electrical and civil engineering, and earth/environmental science, and covers topics such as robotics, water management, process optimization, among others. The book covers both basic concepts and advanced issues, offering a timely introduction to nature-inspired optimization method for newcomers and students, and a source of inspiration as well as important practical insights to engineers and researchers.




Nature-Inspired Optimization in Advanced Manufacturing Processes and Systems


Book Description

The manufacturing system is going through substantial changes and developments in light of Industry 4.0. Newer manufacturing technologies are being developed and applied. There is a need to optimize these techniques when applied in different circumstances with respect to materials, tools, product configurations, and process parameters. This book covers computational intelligence applied to manufacturing. It discusses nature-inspired optimization of processes and their design and development in manufacturing systems. It explores all manufacturing processes, at both macro and micro levels, and offers manufacturing philosophies. Nonconventional manufacturing, real industry problems and case studies, research on generative processes, and relevance of all this to Industry 4.0 is also included. Researchers, students, academicians, and industry professionals will find this reference title very useful.




Nature-Inspired Optimization Algorithms


Book Description

Nature-Inspired Optimization Algorithms provides a systematic introduction to all major nature-inspired algorithms for optimization. The book's unified approach, balancing algorithm introduction, theoretical background and practical implementation, complements extensive literature with well-chosen case studies to illustrate how these algorithms work. Topics include particle swarm optimization, ant and bee algorithms, simulated annealing, cuckoo search, firefly algorithm, bat algorithm, flower algorithm, harmony search, algorithm analysis, constraint handling, hybrid methods, parameter tuning and control, as well as multi-objective optimization. This book can serve as an introductory book for graduates, doctoral students and lecturers in computer science, engineering and natural sciences. It can also serve a source of inspiration for new applications. Researchers and engineers as well as experienced experts will also find it a handy reference. - Discusses and summarizes the latest developments in nature-inspired algorithms with comprehensive, timely literature - Provides a theoretical understanding as well as practical implementation hints - Provides a step-by-step introduction to each algorithm




Nature-inspired Metaheuristic Algorithms


Book Description

Modern metaheuristic algorithms such as bee algorithms and harmony search start to demonstrate their power in dealing with tough optimization problems and even NP-hard problems. This book reviews and introduces the state-of-the-art nature-inspired metaheuristic algorithms in optimization, including genetic algorithms, bee algorithms, particle swarm optimization, simulated annealing, ant colony optimization, harmony search, and firefly algorithms. We also briefly introduce the photosynthetic algorithm, the enzyme algorithm, and Tabu search. Worked examples with implementation have been used to show how each algorithm works. This book is thus an ideal textbook for an undergraduate and/or graduate course. As some of the algorithms such as the harmony search and firefly algorithms are at the forefront of current research, this book can also serve as a reference book for researchers.




Nature-Inspired Algorithms and Applications


Book Description

Mit diesem Buch soll aufgezeigt werden, wie von der Natur inspirierte Berechnungen eine praktische Anwendung im maschinellen Lernen finden, damit wir ein besseres Verständnis für die Welt um uns herum entwickeln. Der Schwerpunkt liegt auf der Darstellung und Präsentation aktueller Entwicklungen in den Bereichen, in denen von der Natur inspirierte Algorithmen speziell konzipiert und angewandt werden, um komplexe reale Probleme in der Datenanalyse und Mustererkennung zu lösen, und zwar durch Anwendung fachspezifischer Lösungen. Mit einer detaillierten Beschreibung verschiedener, von der Natur inspirierter Algorithmen und ihrer multidisziplinären Anwendung (beispielsweise in Maschinenbau und Elektrotechnik, beim maschinellen Lernen, in der Bildverarbeitung, beim Data Mining und in Drahtlosnetzwerken) ist dieses Buch ein praktisches Nachschlagewerk.




Fundamentals of Optimization Techniques with Algorithms


Book Description

Optimization is a key concept in mathematics, computer science, and operations research, and is essential to the modeling of any system, playing an integral role in computer-aided design. Fundamentals of Optimization Techniques with Algorithms presents a complete package of various traditional and advanced optimization techniques along with a variety of example problems, algorithms and MATLAB© code optimization techniques, for linear and nonlinear single variable and multivariable models, as well as multi-objective and advanced optimization techniques. It presents both theoretical and numerical perspectives in a clear and approachable way. In order to help the reader apply optimization techniques in practice, the book details program codes and computer-aided designs in relation to real-world problems. Ten chapters cover, an introduction to optimization; linear programming; single variable nonlinear optimization; multivariable unconstrained nonlinear optimization; multivariable constrained nonlinear optimization; geometric programming; dynamic programming; integer programming; multi-objective optimization; and nature-inspired optimization. This book provides accessible coverage of optimization techniques, and helps the reader to apply them in practice. - Presents optimization techniques clearly, including worked-out examples, from traditional to advanced - Maps out the relations between optimization and other mathematical topics and disciplines - Provides systematic coverage of algorithms to facilitate computer coding - Gives MATLAB© codes in relation to optimization techniques and their use in computer-aided design - Presents nature-inspired optimization techniques including genetic algorithms and artificial neural networks




Clever Algorithms


Book Description

This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language.




Nature Inspired Optimization Techniques for Image Processing Applications


Book Description

This book provides a platform for exploring nature-inspired optimization techniques in the context of imaging applications. Optimization has become part and parcel of all computational vision applications, and since the amount of data used in these applications is vast, the need for optimization techniques has increased exponentially. These accuracy and complexity are a major area of concern when it comes to practical applications. However, these optimization techniques have not yet been fully explored in the context of imaging applications. By presenting interdisciplinary concepts, ranging from optimization to image processing, the book appeals to a broad readership, while also encouraging budding engineers to pursue and employ innovative nature-inspired techniques for image processing applications.




Search and Optimization by Metaheuristics


Book Description

This textbook provides a comprehensive introduction to nature-inspired metaheuristic methods for search and optimization, including the latest trends in evolutionary algorithms and other forms of natural computing. Over 100 different types of these methods are discussed in detail. The authors emphasize non-standard optimization problems and utilize a natural approach to the topic, moving from basic notions to more complex ones. An introductory chapter covers the necessary biological and mathematical backgrounds for understanding the main material. Subsequent chapters then explore almost all of the major metaheuristics for search and optimization created based on natural phenomena, including simulated annealing, recurrent neural networks, genetic algorithms and genetic programming, differential evolution, memetic algorithms, particle swarm optimization, artificial immune systems, ant colony optimization, tabu search and scatter search, bee and bacteria foraging algorithms, harmony search, biomolecular computing, quantum computing, and many others. General topics on dynamic, multimodal, constrained, and multiobjective optimizations are also described. Each chapter includes detailed flowcharts that illustrate specific algorithms and exercises that reinforce important topics. Introduced in the appendix are some benchmarks for the evaluation of metaheuristics. Search and Optimization by Metaheuristics is intended primarily as a textbook for graduate and advanced undergraduate students specializing in engineering and computer science. It will also serve as a valuable resource for scientists and researchers working in these areas, as well as those who are interested in search and optimization methods.