Advanced Power Cycles and Combustion Technical Background


Book Description

The ideal, simple and basic power cycles (Carnot Cycle, Brayton Cycle, Otto Cycle and Diesel Cycle) and combustion are presented in this technical background material. When dealing with power cycles two different approaches are taken with respect to the working fluid. For Carnot Cycle and Brayton Cycle, air, argon, helium and nitrogen are considered as the working fluid. For Otto Cycle and Diesel Cycle, only air is used as the working fluid. When dealing with combustion, six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react with air and oxygen enriched air as the oxidant at different stoichiometry values (stoichiometry => 1) and oxidant inlet temperature values. For each power cycle thermal efficiency derivation is presented with a simple mathematical approach. Also, for each power cycle, a T - s diagram and power cycle major performance trends (thermal efficiency, specific power output, power output, combustion products composition on weight and mole basis, specific fuel consumption and stoichiometry) are plotted in a few figures as a function of compression ratio, turbine inlet temperature and/or final combustion temperature and working fluid mass flow rate. It should be noted that this technical background material does not deal with costs (capital, operational or maintenance). The combustion technical performance at stoichiometry => 1 conditions is presented knowing the enthalpy values for combustion reactants and products, given as a function of temperature. Combustion products composition on both weight and mole basis is given in tabular form and plotted in a few figures. Also, flame temperature, oxidant to fuel ratio and fuel higher heating value (HHV) are presented in tabular form and plotted in a few figures. The provided output data and plots allow one to determine the major combustion performance laws and trends. In this technical background material, one gets familiar with the ideal simple and basic power cycles and combustion and their T - s and h - T diagrams, operation and major performance trends.




Advanced Power Cycle Components/Processes Technical Background


Book Description

The ideal power cycle components/processes (compression, combustion and expansion) are presented in this technical background technical material. When dealing with power cycle components/processes (compression and expansion), air, argon, helium and nitrogen are used as the working fluid. When dealing with combustion, six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react with air and oxygen enriched air as the oxidant at different stoichiometry values (stoichiometry => 1) and oxidant inlet temperature values. For compression and expansion, the technical performance of mentioned power cycle components/processes is presented with a given relationship between pressure and temperature. While for combustion, the technical performance at stoichiometry => 1 conditions and is presented knowing the enthalpy values for combustion reactants and products, given as a function of temperature. This course provides the compression and expansion T - s diagrams and their major performance trends plotted in a few figures as a function of compression and expansion ratio values and working fluid mass flow rate. For each combustion case considered, combustion products composition on both weight and mole basis is given in tabular form and plotted in a few figures. Also, flame temperature, stoichiometric oxidant to fuel ratio and fuel higher heating value (HHV) are presented in tabular form and plotted in a few figures. The provided output data and plots allow one to determine the major combustion performance laws and trends. In this technical background material, one gets familiar with the ideal power cycle components/processes and their T - s and h - T diagrams, operation and major performance trends.




Advanced Energy Conversion Technical Background


Book Description

The ideal, simple and basic power cycles (Carnot Cycle, Brayton Cycle, Otto Cycle and Diesel Cycle), ideal power cycle components/processes (compression, combustion and expansion) and ideal compressible flow components (subsonic nozzle, diffuser and thrust) are presented in this technical background material. When dealing with power cycles two different approaches are taken with respect to the working fluid. For Carnot Cycle and Brayton Cycle, air, argon, helium and nitrogen are considered as the working fluid. For Otto Cycle and Diesel Cycle, only air is used as the working fluid. When dealing with power cycle components/processes (compression and expansion) and compressible flow (nozzle, diffuser and thrust), air, argon, helium and nitrogen are used as the working fluid. When dealing with combustion, six different fuels (carbon, hydrogen, sulfur, coal, oil and gas) react with air and oxygen enriched air as the oxidant at different stoichiometry values (stoichiometry => 1) and oxidant inlet temperature values. For each power cycle thermal efficiency derivation is presented with a simple mathematical approach. Also, for each power cycle, a T - s diagram and power cycle major performance trends (thermal efficiency, specific power output, power output, combustion products composition on weight and mole basis, specific fuel consumption and stoichiometry) are plotted in a few figures as a function of compression ratio, turbine inlet temperature and/or final combustion temperature and working fluid mass flow rate. It should be noted that this technical background material does not deal with costs (capital, operational or maintenance). For compression and expansion, the technical performance of mentioned power cycle components/processes is presented with a given relationship between pressure and temperature. While for combustion, the technical performance at stoichiometry => 1 conditions is presented knowing the enthalpy values for combustion reactants and products, given as a function of temperature. This course provides the compression and expansion T - s diagrams and their major performance trends plotted in a few figures as a function of compression and expansion ratio values and working fluid mass flow rate. For each combustion case considered, combustion products composition on both weight and mole basis is given in tabular form and plotted in a few figures. Also, flame temperature, stoichiometric oxidant to fuel ratio and fuel higher heating value (HHV) are presented in tabular form and plotted in a few figures. The provided output data and plots allow one to determine the major combustion performance laws and trends. For subsonic nozzle, diffuser and thrust, the technical performance of mentioned compressible flow components is presented with a given relationship between temperature and pressure as a function of the Mach Number. This technical background material provides the compressible flow components T - s diagrams and their major performance trends (stagnation over static temperature and pressure ratio values) are plotted in a few figures as a function of the Mach Number. In this technical background material, one gets familiar with the ideal simple and basic power cycles, power cycle components/processes and compressible flow components and their T - s and h - T diagrams, operation and major performance trends.




Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles


Book Description

Fundamentals and Applications of Supercritical Carbon Dioxide (SCO2) Based Power Cycles aims to provide engineers and researchers with an authoritative overview of research and technology in this area. Part One introduces the technology and reviews the properties of SCO2 relevant to power cycles. Other sections of the book address components for SCO2 power cycles, such as turbomachinery expanders, compressors, recuperators, and design challenges, such as the need for high-temperature materials. Chapters on key applications, including waste heat, nuclear power, fossil energy, geothermal and concentrated solar power are also included. The final section addresses major international research programs. Readers will learn about the attractive features of SC02 power cycles, which include a lower capital cost potential than the traditional cycle, and the compounding performance benefits from a more efficient thermodynamic cycle on balance of plant requirements, fuel use, and emissions. - Represents the first book to focus exclusively on SC02 power cycles - Contains detailed coverage of cycle fundamentals, key components, and design challenges - Addresses the wide range of applications of SC02 power cycles, from more efficient electricity generation, to ship propulsion




Legislative History


Book Description







Fossil Energy Update


Book Description







Coal


Book Description

The U.S. Department of Energy (DOE) was given a mandate in the 1992 Energy Policy Act (EPACT) to pursue strategies in coal technology that promote a more competitive economy, a cleaner environment, and increased energy security. Coal evaluates DOE's performance and recommends priorities in updating its coal program and responding to EPACT. This volume provides a picture of likely future coal use and associated technology requirements through the year 2040. Based on near-, mid-, and long-term scenarios, the committee presents a framework for DOE to use in identifying R&D strategies and in making detailed assessments of specific programs. Coal offers an overview of coal-related programs and recent budget trends and explores principal issues in future U.S. and foreign coal use. The volume evaluates DOE Fossil Energy R&D programs in such key areas as electric power generation and conversion of coal to clean fuels. Coal will be important to energy policymakers, executives in the power industry and related trade associations, environmental organizations, and researchers.




Combined Cycle Systems for Near-Zero Emission Power Generation


Book Description

Combined cycle power plants are one of the most promising ways of improving fossil-fuel and biomass energy production. The combination of a gas and steam turbine working in tandem to produce power makes this type of plant highly efficient and allows for CO2 capture and sequestration before combustion. This book provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants.After introductory chapters on basic combined cycle power plant and advanced gas turbine design, the book reviews the main types of combined cycle system. Chapters discuss the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) and integrated gasification combined cycle (IGCC) as well as novel humid air cycle, oxy-combustion turbine cycle systems. The book also reviews pressurised fluidized bed combustion (PFBC), externally fired combined cycle (EFCC), hybrid fuel cell turbine (FC/GT), combined cycle and integrated solar combined cycle (ISCC) systems. The final chapter reviews techno-economic analysis of combined cycle systems.With its distinguished editor and international team of contributors, Combined cycle systems for near-zero emission power generation is a standard reference for both industry practitioners and academic researchers seeking to improve the efficiency and environmental impact of power plants. - Provides a comprehensive review of the design, engineering and operational issues of a range of advanced combined cycle plants - Introduces basic combined cycle power plant and advanced gas turbine design and reviews the main types of combined cycle systems - Discusses the technology, efficiency and emissions performance of natural gas-fired combined cycle (NGCC) systems and integrated gasification combined cycle (IGCC) systems, as well as novel humid air cycle systems and oxy-combustion turbine cycle systems