Advanced Research on Plant Lipids


Book Description

The 15th International Symposium on Plant Lipids was held in Okazaki, Japan, in May 12th to 17th, 2002, at the Okazaki Conference Center. The Symposium was organized by the Japanese Organizing Committee with the cooperation of the Japanese Association of Plant Lipid Researchers. The International Symposium was successful with 225 participants from 29 countries. We acknowledge a large number of participants from Asian countries, in particular, from China, Korea, Malaysia, Taiwan, Thailand and the Philippines, presumably because this was the fIrst time that the International Symposium on Plant Lipids was held in Asia. We also acknowledge a number of scientists from Canada, France, Germany, UK and USA, where plant lipid research is traditionally very active. The Symposium provided an opportunity for presentation and discussion of 68 lectures and 93 posters in 11 scientific sessions, which together covered all aspects of plant lipid researches, such as the structure, analysis, biosynthesis, regulation, physiological function, environmental aspects, and the biotechnology of plant lipids. In memory of the founder of this series of symposia, the Terry Galliard Lecture was delivered by Professor Ernst Heinz from Universitat: Hamburg, Germany. In addition, special lectures were given by two outstanding scientists from animal lipid fields, Professor James Ntambi from University of Wisconsin, USA, and Dr. Masahiro Nishijima from the National Institute for Infectious Diseases, Japan. To our great honor and pleasure, the session of Lipid Biosynthesis was chaired by Dr.




Plant Lipid Metabolism


Book Description

A collection of papers that comprehensively describe the major areas of research on lipid metabolism of plants. State-of-the-art knowledge about research on fatty acid and glycerolipid biosynthesis, isoprenoid metabolism, membrane structure and organization, lipid oxidation and degradation, lipids as intracellular and extracellular messengers, lipids and environment, oil seeds and gene technology is reviewed. The different topics covered show that modern tools of plant cellular and molecular biology, as well as molecular genetics, have been recently used to characterize several key enzymes of plant lipid metabolism (in particular, desaturases, thioesterases, fatty acid synthetase) and to isolate corresponding cDNAs and genomic clones, allowing the use of genetic engineering methods to modify the composition of membranes or storage lipids. These findings open fascinating perspectives, both for establishing the roles of lipids in membrane function and intracellular signalling and for adapting the composition of seed oil to the industrial needs. This book will be a good reference source for research scientists, advanced students and industrialists wishing to follow the considerable progress made in recent years on plant lipid metabolism and to envision the new opportunities offered by genetic engineering for the development of novel oil seeds.







Lipids in Plants and Microbes


Book Description

This short text is designed to provide basic information about plant and microbial lipids not only for scientists working in the microbiological and plant fields, but for anyone wanting a concise introduction to this aspect of lipid biochemistry. We have long been aware that standard biochemistry books tend to. concentrate (sometimes exclusively) on animal lipids, thus neglecting many of the important and special features of other organisms. It is not our intention that the book should be comprehensive and we have not, for instance, provided complete lists of lipid compositions of all plants and bacterial species; a number of excellent specialist texts exist and many of these are listed for further reading. Instead we have sought to provide sufficient information for an advanced undergraduate or a research student to give them a 'feel' for the subject. By a combination of generalisation and the use of examples of special interest we hope the book will whet the appetite of the reader so that, by their own research, they are stimulated to discover and, perhaps, answer some of the fascinating questions concerning plant and microbial lipids. We trust that we shall succeed in these aims, even if that will mean more competition for research funds in our own fields! J. L. HARWOOD N. J. RUSSELL November 1983 Acknowledgements Our research careers have been devoted to a study of lipids: we have no regrets and are happy to acknowledge Professors J. N.




Biochemistry of Lipids, Lipoproteins and Membranes


Book Description

The second edition of this book on lipids, lipoprotein and membrane biochemistry has two major objectives - to provide anadvanced textbook for students in these areas of biochemistry,and to summarise the field for scientists pursuing research inthese and related fields. Since the first edition of this book was published in 1985 theemphasis on research in the area of lipid and membrane biochemistry has evolved in new directions. Consequently, thesecond edition has been modified to include four chapters on lipoproteins. Moreover, the other chapters have been extensivelyupdated and revised so that additional material covering the areas of cell signalling by lipids, the assembly of lipids andproteins into membranes, and the increasing use of molecular biological techniques for research in the areas of lipid, lipoprotein and membrane biochemistry have been included. Each chapter of the textbook is written by an expert in the field, but the chapters are not simply reviews of current literature. Rather, they are written as current, readable summaries of these areas of research which should be readily understandable to students and researchers who have a basic knowledge of general biochemistry. The authors were selected fortheir abilities both as researchers and as communicators. In addition, the editors have carefully coordinated the chapters sothat there is little overlap, yet extensive cross-referencing among chapters.




Lipids in Photosynthesis


Book Description

Lipids in Photosynthesis: Essential and Regulatory Functions, provides an essential summary of an exciting decade of research on relationships between lipids and photosynthesis. The book brings together extensively cross-referenced and peer-reviewed chapters by prominent researchers. The topics covered include the structure, molecular organization and biosynthesis of fatty acids, glycerolipids and nonglycerolipids in plants, algae, lichens, mosses, and cyanobacteria, as well as in chloroplasts and mitochondria. Several chapters deal with the manipulation of the extent of unsaturation of fatty acids and the effects of such manipulation on photosynthesis and responses to various forms of stress. The final chapters focus on lipid trafficking, signaling and advanced analytical techniques. Ten years ago, Siegenthaler and Murata edited "Lipids in Photosynthesis: Structure, Function and Genetics," which became a classic in the field. "Lipids in Photosynthesis: Essential and Regulatory Functions," belongs, with its predecessor, in every plant and microbiological researcher's bookcase.







Lipid signaling in plants


Book Description

Cell membranes are the initial and focal sites of stimulus perception and signal transduction. Membrane lipids are rich sources for the production of signaling messengers that mediate plant growth, development, and response to nutrient status and stresses. In recent years, substantial progress has been made toward understanding lipid signaling in plants, but many fundamental questions remain: What lipids are signaling messengers or mediators in plants? How are the signaling lipids produced and metabolized? In what plant cellular and physiological processes are various lipid mediators involved? How do they carry out their signaling functions? How do lipid signaling networks contribute to modulating plant growth, development, and responses to hormones and stresses? In this Research Topic issue, we invite the broad plant community to address the above questions.Cell membranes are the initial and focal sites of stimulus perception and signal transduction. Membrane lipids are rich sources for the production of signaling messengers that mediate plant growth, development, and response to nutrient status and stresses. In recent years, substantial progress has been made toward understanding lipid signaling in plants, but many fundamental questions remain: What lipids are signaling messengers or mediators in plants? How are the signaling lipids produced and metabolized? In what plant cellular and physiological processes are various lipid mediators involved? How do they carry out their signaling functions? How do lipid signaling networks contribute to modulating plant growth, development, and responses to hormones and stresses? In this Research Topic issue, we invite the broad plant community to address the above questions.




Cell-wide Metabolic Alterations Associated with Malignancy


Book Description

This new volume of Methods in Enzymology continues the legacy of this premier serial with quality chapters authored by leaders in the field. This volume covers research methods providing a a theoretical overview on metabolic alterations of cancer cells and a series of protocols that can be employed to study oncometabolism, in vitro, ex vivo and in vivo. Malignant cells exhibit metabolic changes when compared to their normal counterparts, owing to both genetic and epigenetic alterations. Although such a metabolic rewiring has recently been indicated as "yet another" general hallmark of cancer, accumulating evidence suggests that the metabolic alterations of each neoplasm rather represent a molecular signature that intimately accompanies, and hence cannot be severed from, all facets of malignant transformation.




Biochemistry of Lipids, Lipoproteins and Membranes


Book Description

Biochemistry of Lipids: Lipoproteins and Membranes, Volume Six, contains concise chapters that cover a wide spectrum of topics in the field of lipid biochemistry and cell biology. It provides an important bridge between broad-based biochemistry textbooks and more technical research publications, offering cohesive, foundational information. It is a valuable tool for advanced graduate students and researchers who are interested in exploring lipid biology in more detail, and includes overviews of lipid biology in both prokaryotes and eukaryotes, while also providing fundamental background on the subsequent descriptions of fatty acid synthesis, desaturation and elongation, and the pathways that lead the synthesis of complex phospholipids, sphingolipids, and their structural variants. Also covered are sections on how bioactive lipids are involved in cell signaling with an emphasis on disease implications and pathological consequences. - Serves as a general reference book for scientists studying lipids, lipoproteins and membranes and as an advanced and up-to-date textbook for teachers and students who are familiar with the basic concepts of lipid biochemistry - References from current literature will be included in each chapter to facilitate more in-depth study - Key concepts are supported by figures and models to improve reader understanding - Chapters provide historical perspective and current analysis of each topic