Advanced Sensors for Real-time Control of Advanced Natural-gas Reciprocating Engine Combustion


Book Description

This is the final report of a three-year project under a Department of Energy Advanced Reciprocating Engine Systems contract. The goal of this project is to develop advanced sensors for real-time combustion monitoring of advanced natural-gas reciprocating engines. Two sensor technologies, ion-mobility spectrometry (IMS) and acoustic gas sensing, were tested for detection of NO{sub x} emissions and monitoring of natural-gas composition. This project examined two novel approaches: use of a corona/spark-discharge ionization source for IMS, and acoustic-relaxation spectra of natural gas for the acoustic gas sensor. We have completed evaluation of laboratory prototypes of both sensors. In this report, we will describe the basic elements of the sensors, their operating and detection principles, their performance, and other issues. Design modifications and suggested applications of field prototypes will also be presented.




Advanced Sensors for Real-Time Monitoring Applications


Book Description

It is impossible to imagine the modern world without sensors, or without real-time information about almost everything--from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications.










Advanced Start of Combustion Sensor Phases I and II-A


Book Description

Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a juncture where plans can be and are discussed with an industry partner for how best to perform a more detailed implementation of the TIAX SOC technology on an HCCI engine system. This occurred, as evidenced the number of potential commercialization partners shown in Table 4. Potential Commercialization Partners Contacted (up to date as of January 31, 2010). During the two phases, a robust, engine-generic algorithm was developed that met the desired targets and was shown to work extremely well for HCCI engine operation.




Smart Sensors for Industry 4.0


Book Description

Discover the essential guide to harnessing the power of cutting-edge smart sensors in Industry 4.0, offering deep insights into fundamentals, fabrication techniques, and real-world IIoT applications, equipping you with the knowledge to revolutionize your industrial processes and stay ahead in the digital era. Over the last decade, technologies like the Internet of Things (IoT), big data, cloud computing, blockchain, artificial intelligence (AI), machine learning, device automation, smart sensors, etc., have become highly developed fundamental supports of Industry 4.0, replacing the conventional production systems with advanced methods, and thereby endorsing the smart industry vision. Industry 4.0 is more flexible and agile in dealing with several risk factors, further enabling improved productivity and efficiency, distribution, increased profitability, data integrity, and enhancing customer experience in the current commercial environment. For understanding and analyzing the environment, sensors play a major role in performing the measurements based on computation-produced results from the surrounding environment. Sensors have a wide range of applications for smart industrial operations. The evolution of flexible, low-cost, and multipurpose sensors and their system integration has been examined to develop advanced devices with applications in numerous fields of technology. With the development of both the Internet of Things (IoT) and the Industrial IoT (IIoT), advanced sensors and their associated applications are developing, resulting in the necessity for IoT sensors to be used for several industrial applications. Beneficial aspects of this book include: The latest research in materials and methodology for the fabrication of intelligent sensors, its IoT system integration, and IIoT applications are brought together; Promotes a vision towards making sensor-based monitoring and control of smart industry; Recent advances and challenges of smart sensors are discussed with an emphasis on unmet challenges and future directions of a roadmap to Industry 4.0. Audience This book is highly recommended to a wide range of researchers and industry engineers working in the area of fabrication and integration of industrial smart sensors for IIoT applications, advanced materials for sensor technology, fabrication and characterization of IoT sensors, development of low-cost sensors, sensor system design and integration, and its industrial applications. Post-graduate students from different streams like computer science, electronics and electrical engineering, information technology, electronic communication, etc. will benefit from reading this book.




Advanced Gas Sensing


Book Description

Advanced Gas Sensing focuses on the Electroadsorptive Effect: its theory, experimental measurement and applications in consumer gas sensors as well as in surface physics laboratory work. The Electroadsorptive Effect is invaluable when used in MEMS gas sensors. The authors use a general approach that covers new insights into temperature modulation and the use of light. The emphasis is given to electrical fields in gas sensors, which cause the Electroadsorptive Effect. The effect has long been known by experts working in the field, but has been regarded as too difficult for use until recently because of increasing sensor miniaturization. The book will serve as an introduction to sensitivity tuning of semiconductor gas sensors, introducing the underlying theory and experimental models before moving on to design considerations, applications and market considerations. A literature review and examples of experimental data are included.




Masters Theses in the Pure and Applied Sciences


Book Description

Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) * at Purdue University in 1 957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all con cerned if the printing and distribution of the volumes were handled by an interna tional publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Cor poration of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 29 (thesis year 1984) a total of 12,637 theses titles from 23 Canadian and 202 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this important annual reference work. While Volume 29 reports theses submitted in 1984, on occasion, certain univer sities do report theses submitted in previous years but not reported at the time.




EVALUATION OF SENSORS AND STRATEGIES FOR CLOSED LOOP COMBUSTION CONTROL OF A GASOLINE SPARK-IGNITION TURBOCHARGED DIRECT INJECTION ENGINE


Book Description

Abstract : Fuel economy has become one of the top design parameters of modern passenger cars and light trucks. Recent CAFE regulations have required manufactures to push the fuel economy of US passenger vehicles under 8600 lb GVW beyond the limit of conventional technology [1]. In order to continue to meet the increasing requirements for fuel economy while still satisfying other design criteria including safety, tailpipe emissions, performance, and comfort, more expensive technology must be integrated into each vehicle specifically the powertrain. Diminishing returns of the payback period of fuel savings vs. higher initial vehicle cost has now become longer than the life of the vehicle. Because of this, the dollar per fuel economy benefit of each technology is being closely examined and investigated [1]. In this thesis, the potential fuel economy benefit of a technology was studied for feasibility and potential; the technology was on-board cylinder pressure sensors and the data available from them. Two low-cost cylinder pressure sensor types from two suppliers were evaluated and analyzed and compared to a laboratory sensor of known performance characteristics. Further the benefits from real-time cylinder pressure feedback capable of improving part load combustion phasing, combustion variability management were studied. Two areas of fuel consumption reduction which this thesis concentrates on are the improvement of locating spark advance through combustion duration feedback, and the extension of the dilute limit through combustion cycle stability measurement during transient operating conditions. By allowing the engine to run at more dilute conditions and locating spark advance to produce combustion durations closer to MBT, lower fuel consumption is possible. Vehicle EPA drive cycle data was used to examine areas of operation that were not operating at maximum efficiency to determine the fuel economy benefit that could be achieved through the availability of cylinder pressure data in terms of burn location and running dilute/lean. Methods to improve fuel economy in the engine such as dilution of air charge can have a negative effect on combustion stability [2]. In a laboratory environment combustion stability is measured during steady state operation using cylinder pressure data typically using a 100 cycle moving window for averaging. Transient engine operating conditions present in every drive cycle do not allow for calculating combustion stability in this way because it cannot be assumed that even two cycles are at the same operating conditions. If cylinder pressure sensor data were available on a production vehicle, the ability to measure combustion stability would exist but the transient measurement of combustion stability poses challenges which are discussed. A metric is developed to make comparable measurements in real time and the outcomes and benefits available from these measurements are evaluated.