Advances and Applications of DSmT for Information Fusion (Collected Works. Volume 5)


Book Description

This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 (available at fs.unm.edu/DSmT-book4.pdf or www.onera.fr/sites/default/files/297/2015-DSmT-Book4.pdf) in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well. We want to thank all the contributors of this fifth volume for their research works and their interests in the development of DSmT, and the belief functions. We are grateful as well to other colleagues for encouraging us to edit this fifth volume, and for sharing with us several ideas and for their questions and comments on DSmT through the years. We thank the International Society of Information Fusion (www.isif.org) for diffusing main research works related to information fusion (including DSmT) in the international fusion conferences series over the years. Florentin Smarandache is grateful to The University of New Mexico, U.S.A., that many times partially sponsored him to attend international conferences, workshops and seminars on Information Fusion. Jean Dezert is grateful to the Department of Information Processing and Systems (DTIS) of the French Aerospace Lab (Office National d’E´tudes et de Recherches Ae´rospatiales), Palaiseau, France, for encouraging him to carry on this research and for its financial support. Albena Tchamova is first of all grateful to Dr. Jean Dezert for the opportunity to be involved during more than 20 years to follow and share his smart and beautiful visions and ideas in the development of the powerful Dezert-Smarandache Theory for data fusion. She is also grateful to the Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, for sponsoring her to attend international conferences on Information Fusion.




Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 4


Book Description

The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions have been published or presented after disseminating the third volume (2009, http://fs.gallup.unm.edu/DSmT-book3.pdf) in international conferences, seminars, workshops and journals.




Advances and Applications of DSmT for Information Fusion, Vol. IV


Book Description

The fourth volume on Advances and Applications of Dezert-Smarandache Theory (DSmT) for information fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics. The contributions (see List of Articles published in this book, at the end of the volume) have been published or presented after disseminating the third volume (2009, http://fs.gallup.unm.edu/DSmT-book3.pdf) ininternational conferences, seminars, workshops and journals.




Application of DSmT-ICM with Adaptive decision rule to supervised classification in multisource remote sensing


Book Description

In this paper, we introduce a new procedure called DSmT-ICM with adaptive decision rule, which is an alternative and extension of Multisource Classification Using ICM (Iterated conditional mode) and DempsterShafer theory (DST). This work confirmed the ability of the Dezert-Smarandache Theory (DSmT) used for the modeling of the classes sets of themes to significantly improve the quality of ICM classification algorithm with constraints by the fusion of the multidates images.




Neutrosophic Sets and Systems, Vol. 47, 2021


Book Description

Papers on neutrosophic statistics, neutrosophic probability, plithogenic set, paradoxism, neutrosophic set, NeutroAlgebra, etc. and their applications.




Implementing general belief function framework with a practical codification for low complexity


Book Description

In this chapter, we propose a new practical codification of the elements of the Venn diagram in order to easily manipulate the focal elements. In order to reduce the complexity, the eventual constraints must be integrated in the codification at the beginning.




Collected Papers. Volume XII


Book Description

This twelfth volume of Collected Papers includes 86 papers comprising 976 pages on Neutrosophics Theory and Applications, published between 2013-2021 in the international journal and book series “Neutrosophic Sets and Systems” by the author alone or in collaboration with the following 112 co-authors (alphabetically ordered) from 21 countries: Abdel Nasser H. Zaied, Muhammad Akram, Bobin Albert, S. A. Alblowi, S. Anitha, Guennoun Asmae, Assia Bakali, Ayman M. Manie, Abdul Sami Awan, Azeddine Elhassouny, Erick González-Caballero, D. Dafik, Mithun Datta, Arindam Dey, Mamouni Dhar, Christopher Dyer, Nur Ain Ebas, Mohamed Eisa, Ahmed K. Essa, Faruk Karaaslan, João Alcione Sganderla Figueiredo, Jorge Fernando Goyes García, N. Ramila Gandhi, Sudipta Gayen, Gustavo Alvarez Gómez, Sharon Dinarza Álvarez Gómez, Haitham A. El-Ghareeb, Hamiden Abd El-Wahed Khalifa, Masooma Raza Hashmi, Ibrahim M. Hezam, German Acurio Hidalgo, Le Hoang Son, R. Jahir Hussain, S. Satham Hussain, Ali Hussein Mahmood Al-Obaidi, Hays Hatem Imran, Nabeela Ishfaq, Saeid Jafari, R. Jansi, V. Jeyanthi, M. Jeyaraman, Sripati Jha, Jun Ye, W.B. Vasantha Kandasamy, Abdullah Kargın, J. Kavikumar, Kawther Fawzi Hamza Alhasan, Huda E. Khalid, Neha Andalleb Khalid, Mohsin Khalid, Madad Khan, D. Koley, Valeri Kroumov, Manoranjan Kumar Singh, Pavan Kumar, Prem Kumar Singh, Ranjan Kumar, Malayalan Lathamaheswari, A.N. Mangayarkkarasi, Carlos Rosero Martínez, Marvelio Alfaro Matos, Mai Mohamed, Nivetha Martin, Mohamed Abdel-Basset, Mohamed Talea, K. Mohana, Muhammad Irfan Ahamad, Rana Muhammad Zulqarnain, Muhammad Riaz, Muhammad Saeed, Muhammad Saqlain, Muhammad Shabir, Muhammad Zeeshan, Anjan Mukherjee, Mumtaz Ali, Deivanayagampillai Nagarajan, Iqra Nawaz, Munazza Naz, Roan Thi Ngan, Necati Olgun, Rodolfo González Ortega, P. Pandiammal, I. Pradeepa, R. Princy, Marcos David Oviedo Rodríguez, Jesús Estupiñán Ricardo, A. Rohini, Sabu Sebastian, Abhijit Saha, Mehmet Șahin, Said Broumi, Saima Anis, A.A. Salama, Ganeshsree Selvachandran, Seyed Ahmad Edalatpanah, Sajana Shaik, Soufiane Idbrahim, S. Sowndrarajan, Mohamed Talea, Ruipu Tan, Chalapathi Tekuri, Selçuk Topal, S. P. Tiwari, Vakkas Uluçay, Maikel Leyva Vázquez, Chinnadurai Veerappan, M. Venkatachalam, Luige Vlădăreanu, Ştefan Vlăduţescu, Young Bae Jun, Wadei F. Al-Omeri, Xiao Long Xin.




Fusion of imprecise qualitative information


Book Description

In this paper, we present a new 2-tuple linguistic representation model, i.e. Distribution Function Model (DFM), for combining imprecise qualitativeinformation using fusion rules drawn from Dezert-Smarandache Theory (DSmT) framework.




Image and Signal Processing


Book Description

This book constitutes the refereed proceedings of the 5th International Conference on Image and Signal Processing, ICISP 2012, held in Agadir, Morocco, in June 2012. The 75 revised full papers presented were carefully reviewed and selected from 158 submissions. The contributions are grouped into the following topical sections: multi/hyperspectral imaging; image itering and coding; signal processing; biometric; watermarking and texture; segmentation and retieval; image processing; pattern recognition.




Transformations of belief masses into subjective probabilities


Book Description

In this chapter, we propose in the DSmT framework, a new probabilistic transformation, called DSmP, in order to build a subjective probability measure from any basic belief assignment defined on any model of the frame of discernment. Several examples are given to show how the DSmP transformation works and we compare it to main existing transformations proposed in the literature so far. We show the advantages of DSmP over classical transformations in term of Probabilistic Information Content (PIC). The direct extension of this transformation for dealing with qualitative belief assignments is also presented. This theoretical work must increase the performances of DSmT-based hard-decision based systems as well as in soft-decision based systems in many fields where it could be used, i.e. in biometrics, medicine, robotics, surveillance and threat assessment, multisensor-multitarget tracking for military and civilian applications, etc.