Introduction to Texture Analysis


Book Description

Reflecting emerging methods and the evolution of the field, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping keeps mathematics to a minimum in covering both traditional macrotexture analysis and more advanced electron-microscopy-based microtexture analysis. The authors integrate the two techniques and address the subsequent need for a more detailed explanation of philosophy, practice, and analysis associated with texture analysis. The book illustrates approaches to orientation measurement and interpretation and elucidates the fundamental principles on which measurements are based. Thoroughly updated, this Third Edition of a best-seller is a rare introductory-level guide to texture analysis. Discusses terminology associated with orientations, texture, and their representation, as well as the diffraction of radiation, a phenomenon that is the basis for almost all texture analysis. Covers data acquisition, as well as representation and evaluation related to the well-established methods of macrotexture analysis. Updated to include experimental details of the latest transmission or scanning electron microscope-based techniques for microstructure analysis, including electron backscatter diffraction (EBSD). Describes how microtexture data are evaluated and represented and emphasizes the advances in orientation microscopy and mapping, and advanced issues concerning crystallographic aspects of interfaces and connectivity. Offers new and innovative grain boundary descriptions and examples. This book is an ideal tool to help readers in the materials sciences develop a working understanding of the practice and applications of texture.




Combined Analysis


Book Description

This book introduces and details the key facets of Combined Analysis—an x-ray and/or neutron scattering methodology which combines structural, textural, stress, microstructural, phase, layer, or other relevant variable or property analyses in a single approach. The author starts with basic theories related to diffraction by polycrystals and some of the most common combined analysis instrumental set-ups are detailed. Powder diffraction data treatment is introduced and in particular, the Rietveld analysis is discussed. The book also addresses automatic phase indexing—a necessary step to solve a structure ab initio. Since its effect prevails on real samples where textures are often stabilized, quantitative texture analysis is also detailed. Also discussed are microstructures of powder diffraction profiles; quantitative phase analysis from the Rietveld analysis; residual stress analysis for isotropic and anisotropic materials; specular x-ray reflectivity, and the various associated models. Finally, the book introduces the combined analysis concept, showing how it is superior to the view presented when we look at only one part of the analyses. This book shows that the existence of texture in a specimen can be envisaged as a way to decouple ordinarily strongly correlated parameters, as measured for instance in powder diagrams, and to examine and detail deeper material characterizations in a single methodology.




Two-dimensional X-ray Diffraction


Book Description

An indispensable resource for researchers and students in materials science, chemistry, physics, and pharmaceuticals Written by one of the pioneers of 2D X-Ray Diffraction, this updated and expanded edition of the definitive text in the field provides comprehensive coverage of the fundamentals of that analytical method, as well as state-of-the art experimental methods and applications. Geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis, and combinatorial screening are all covered in detail. Numerous experimental examples in materials research, manufacture, and pharmaceuticals are provided throughout. Two-dimensional x-ray diffraction is the ideal, non-destructive analytical method for examining samples of all kinds including metals, polymers, ceramics, semiconductors, thin films, coatings, paints, biomaterials, composites, and more. Two-Dimensional X-Ray Diffraction, Second Edition is an up-to-date resource for understanding how the latest 2D detectors are integrated into diffractometers, how to get the best data using the 2D detector for diffraction, and how to interpret this data. All those desirous of setting up a 2D diffraction in their own laboratories will find the author’s coverage of the physical principles, projection geometry, and mathematical derivations extremely helpful. Features new contents in all chapters with most figures in full color to reveal more details in illustrations and diffraction patterns Covers the recent advances in detector technology and 2D data collection strategies that have led to dramatic increases in the use of two-dimensional detectors for x-ray diffraction Provides in-depth coverage of new innovations in x-ray sources, optics, system configurations, applications and data evaluation algorithms Contains new methods and experimental examples in stress, texture, crystal size, crystal orientation and thin film analysis Two-Dimensional X-Ray Diffraction, Second Edition is an important working resource for industrial and academic researchers and developers in materials science, chemistry, physics, pharmaceuticals, and all those who use x-ray diffraction as a characterization method. Users of all levels, instrument technicians and X-ray laboratory managers, as well as instrument developers, will want to have it on hand.




Applications of Texture Analysis


Book Description

This volume contains papers presented at The 15th International Conference on the Texture of Materials from June 1-5th, 2008 in Pittsburgh, PA. Chapters include: Thin Films Texture at Non-Ambient Conditions Novel Texture Measurement Techniques Including 3D Complex Oxides Interface Textures Recrystallization Texture Biomaterials Texture Effects on Damage Accumulation Digital Microstructures View information on Materials Processing and Texture: Ceramic Transactions, Volume 200.




Handbook of Texture Analysis


Book Description

The major goals of texture research in computer vision are to understand, model, and process texture and, ultimately, to simulate the human visual learning process using computer technologies. In the last decade, artificial intelligence has been revolutionized by machine learning and big data approaches, outperforming human prediction on a wide range of problems. In particular, deep learning convolutional neural networks (CNNs) are particularly well suited to texture analysis. This volume presents important branches of texture analysis methods which find a proper application in AI-based medical image analysis. This book: Discusses first-order, second-order statistical methods, local binary pattern (LBP) methods, and filter bank-based methods Covers spatial frequency-based methods, Fourier analysis, Markov random fields, Gabor filters, and Hough transformation Describes advanced textural methods based on DL as well as BD and advanced applications of texture to medial image segmentation Is aimed at researchers, academics, and advanced students in biomedical engineering, image analysis, cognitive science, and computer science and engineering This is an essential reference for those looking to advance their understanding in this applied and emergent field.




Quantitative Texture Analysis


Book Description







Neutron Applications in Earth, Energy and Environmental Sciences


Book Description

Neutron Applications in Earth, Energy and Environmental Sciences offers a comprehensive overview of the wide ranging applications of neutron scattering techniques to elucidate the fundamental materials properties at the nano-, micro- and meso-scale, which underpin research in the related fields of Earth, Energy and Environmental Sciences. Introductions to neutron scattering fundamentals and instrumentation are paired with a thorough review of the applications to a large variety of scientific and technological problems, written through the direct experience of leading scientists in each field. Tailored to a wide audience, this volume provides the novice with an inspiring introduction and stimulates the expert to consider these non-conventional problem solving techniques in his/her field of interest. Earth and environmental scientists, engineers, researchers and graduate students involved with materials science will find Neutron Applications in Earth, Energy and Environmental Sciences a valuable ready-to-use reference.