Category Theory in Context


Book Description

Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.




Advances in Mathematical Sciences


Book Description

This volume highlights the mathematical research presented at the 2019 Association for Women in Mathematics (AWM) Research Symposium held at Rice University, April 6-7, 2019. The symposium showcased research from women across the mathematical sciences working in academia, government, and industry, as well as featured women across the career spectrum: undergraduates, graduate students, postdocs, and professionals. The book is divided into eight parts, opening with a plenary talk and followed by a combination of research paper contributions and survey papers in the different areas of mathematics represented at the symposium: algebraic combinatorics and graph theory algebraic biology commutative algebra analysis, probability, and PDEs topology applied mathematics mathematics education




Algebraic Topology and Related Topics


Book Description

This book highlights the latest advances in algebraic topology, from homotopy theory, braid groups, configuration spaces and toric topology, to transformation groups and the adjoining area of knot theory. It consists of well-written original research papers and survey articles by subject experts, most of which were presented at the “7th East Asian Conference on Algebraic Topology” held at the Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India, from December 1 to 6, 2017. Algebraic topology is a broad area of mathematics that has seen enormous developments over the past decade, and as such this book is a valuable resource for graduate students and researchers working in the field.




A Concise Course in Algebraic Topology


Book Description

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.




Elementary Concepts of Topology


Book Description

Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.




Qα Analysis on Euclidean Spaces


Book Description

Starting with the fundamentals of Qα spaces and their relationships to Besov spaces, this book presents all major results around Qα spaces obtained in the past 16 years. The applications of Qα spaces in the study of the incompressible Navier-Stokes system and its stationary form are also discussed. This self-contained book can be used as an essential reference for researchers and graduates in analysis and partial differential equations.




Algebraic and Analytic Geometry


Book Description

Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.




Advanced Algebra


Book Description

Basic Algebra and Advanced Algebra systematically develop concepts and tools in algebra that are vital to every mathematician, whether pure or applied, aspiring or established. Advanced Algebra includes chapters on modern algebra which treat various topics in commutative and noncommutative algebra and provide introductions to the theory of associative algebras, homological algebras, algebraic number theory, and algebraic geometry. Many examples and hundreds of problems are included, along with hints or complete solutions for most of the problems. Together the two books give the reader a global view of algebra and its role in mathematics as a whole.




Advanced Mathematics


Book Description

Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.




A Course in Advanced Calculus


Book Description

This remarkable undergraduate-level text offers a study in calculus that simultaneously unifies the concepts of integration in Euclidean space while at the same time giving students an overview of other areas intimately related to mathematical analysis. The author achieves this ambitious undertaking by shifting easily from one related subject to another. Thus, discussions of topology, linear algebra, and inequalities yield to examinations of innerproduct spaces, Fourier series, and the secret of Pythagoras. Beginning with a look at sets and structures, the text advances to such topics as limit and continuity in En, measure and integration, differentiable mappings, sequences and series, applications of improper integrals, and more. Carefully chosen problems appear at the end of each chapter, and this new edition features an additional appendix of tips and solutions for selected problems.