Advances in Auroral Physics


Book Description




Auroral Physics


Book Description

This volume surveys our current scientific understanding of the terrestrial aurora. It is organized into eleven reviews detailing theoretical and observational aspects of characteristic auroral morphologies, and how these in turn are organized according to local time, latitude, and activity level. Popular descriptions often attribute the aurora to the interaction of charged particles from the solar wind with atoms in the upper atmosphere. In fact, most auroras are not the result of direct entry of solar wind particles. Rather, as detailed in this volume, auroral particle acceleration and generation of auroral forms occur primarily within the magnetosphere. Importantly, many key aspects of the aurora – most notably, the physical mechanisms responsible for the generation of discrete arcs – are still unexplained, and auroral physics continues to be an active area of scientific research. Each review chapter therefore includes a summary of open questions for further investigation. Providing the first comprehensive review of the terrestrial aurora in two decades, this book will aid both active researchers and newcomers interested in understanding the current state of the field. Previously published Space Science Reviews in the Topical Collection "Auroral Physics”




Advances in Auroral Plasma Physics


Book Description




Exploring the Secrets of the Aurora


Book Description

This book describes the history of the progress made in auroral science and magnetospheric physics by providing examples of ideas, controversies, struggles, acceptance, and success in some instances. The author, a distinguished auroral scientist, fully describes his experiences in characterizing and explaining auroral phenomena. The volume also includes beautiful full-color photos of the aurora.







Auroral Phenomenology and Magnetospheric Processes


Book Description

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 197. Many of the most basic aspects of the aurora remain unexplained. While in the past terrestrial and planetary auroras have been largely treated in separate books, Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets takes a holistic approach, treating the aurora as a fundamental process and discussing the phenomenology, physics, and relationship with the respective planetary magnetospheres in one volume. While there are some behaviors common in auroras of the different planets, there are also striking differences that test our basic understanding of auroral processes. The objective, upon which this monograph is focused, is to connect our knowledge of auroral morphology to the physical processes in the magnetosphere that power and structure discrete and diffuse auroras. Understanding this connection will result in a more complete explanation of the aurora and also further the goal of being able to interpret the global auroral distributions as a dynamic map of the magnetosphere. The volume synthesizes five major areas: auroral phenomenology, aurora and ionospheric electrodynamics, discrete auroral acceleration, aurora and magnetospheric dynamics, and comparative planetary aurora. Covering the recent advances in observations, simulation, and theory, this book will serve a broad community of scientists, including graduate students, studying auroras at Mars, Earth, Saturn, and Jupiter. Projected beyond our solar system, it may also be of interest for astronomers who are looking for aurora-active exoplanets.




Electron Acceleration in the Aurora and Beyond


Book Description

How did electrons in the high atmosphere and space around the Earth come to acquire their speeds and energies? This intriguing question lies at the heart of understanding how high-energy electrons create the spectacular displays of the ^IAurora Borealis and ^IAurora Australis. Electron Acceleration in the Aurora and Beyond explores the mysteries of these phenomena and others involving the acceleration of electrons in the magnetosphere, in the solar wind, at the Sun and in the Cosmos. This book presents a new approach to understanding this fascinating subject by treating the acceleration medium as a plasma. Using this new insight we can see that electron acceleration may well be caused by waves rather than steady potential differences. This unique approach is clearly explained in a lively and engaging style. Quantitative formulae, experiments, practical demonstrations and computer programs enable us to investigate for ourselves how the model works. The theory is further illustrated by comparing acceleration in space with particle accelerators in the nuclear physics laboratory (and even on the sports field!) Questions and exercises with answers are supplied to stimulate further thinking. ^IElectron Acceleration in the Aurora and Beyond is a thought-provoking book for graduate and post-doctoral space scientists.




Physics of the Aurora and Airglow


Book Description

International Geophysics Series, Volume 2: Physics of the Aurora and Airglow explores certain physical aspects of aurora and airglow. This volume is composed of 13 chapters and begins with surveys of the theory and spectroscopic and photometric analyses of radiation from the upper atmosphere. The subsequent chapters treat the geographic distribution of aurora and its physical processes in the atmosphere. Other chapters examine the theory of hydrogen emission in aurora, resonance scattering by atmospheric sodium, the excitation of the oxygen red lines in the airglow, and an atlas of the auroral spectrum. A chapter focuses on the analysis of twilight observations for emission heights. The concluding chapters discuss the theory of day airglow, as well as the spectral photometry and excitation of the nightglow. This book is of value to geophysicists, theoreticians, and scientists of the allied fields of geophysics.




Space Physics


Book Description

Observations and physical concepts are interwoven to give basic explanations of phenomena and also show the limitations in these explanations and identify some fundamental questions. Compared to conventional plasma physics textbooks this book focuses on the concepts relevant in the large-scale space plasmas. It combines basic concepts with current research and new observations in interplanetary space and in the magnetospheres. Graduate students and young researchers starting to work in this special field of science, will find the numerous references to review articles as well as important original papers helpful to orientate themselves in the literature. Emphasis is on energetic particles and their interaction with the plasma as examples for non-thermal phenomena, shocks and their role in particle acceleration as examples for non-linear phenomena. This second edition has been updated and extended. Improvements include: the use of SI units; addition of recent results from SOHO and Ulysses; improved treatment of the magnetosphere as a dynamic phenomenon; text restructured to provide a closer coupling between basic physical concepts and observed complex phenomena.