Axial-flow Compressors


Book Description

This book provides a thorough description of an aerodynamic design and analysis systems for Axial-Flow Compressors. It describes the basic fluid dynamic and thermodynamic principles, empirical models and numerical methods used for the full range of procedures and analytical tools that an engineer needs for virtually any tupe of Axial-Flow Compressor, aerodynamic design or analysis activity. It reviews and evaluates several design strategies that have been recommended in the literature or which have been found to be effective. It gives a complete description of an actual working system, such that readers can implement all or part of the system. Engineers responsible for developing, maintaining of improving design and analysis systems can benefit greatly from this type of reference. The technology has become so complex and the role of computers so pervasive that about the only way this can be done today is to concentrate on a specific design and analysis system. The author provides practical methodology as well as the details needed to implement the suggested procedures.







Compressor Aerodynamics


Book Description

Starting from first principles, this book looks at the aerodynamic behavior of axial and radial compressors. The text starts with general ideas, and then moves through the simple aspects of axial compressors to the more advanced three-dimensional ideas.




Gas Turbines for Electric Power Generation


Book Description

Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.




Jet, Rocket, Nuclear, Ion and Electric Propulsion


Book Description

During the last decade, rapid growth of knowledge in the field of jet, rocket, nuclear, ion and electric propulsion has resulted in many advances useful to the student, engineer and scientist. The purpose for offering this course is to make available to them these recent advances in theory and design. Accordingly, this course is organized into seven parts: Part 1 Introduction; Part 2 Jet Propulsion; Part 3 Rocket Propulsion; Part 4 Nuclear Propulsion; Part 5 Electric and Ion Propulsion; Part 6 Theory on Combustion, Detonation and Fluid Injection; Part 7 Advanced Concepts and Mission Applications. It is written in such a way that it may easily be adopted by other universities as a textbook for a one semester senior or graduate course on the subject. In addition to the undersigned who served as the course instructor and wrote Chapter I, 2 and 3, guest lecturers included: DR. G. L. DUGGER who wrote Chapter 4 "Ram-jets and Air-Aug mented Rockets," DR. GEORGE P. SUTTON who wrote Chapter 5 "Rockets and Cooling Methods," DR . . MARTIN SUMMERFIELD who wrote Chapter 6 "Solid Propellant Rockets," DR. HOWARD S. SEIFERT who wrote Chapter 7 "Hybrid Rockets," DR. CHANDLER C. Ross who wrote Chapter 8 "Advanced Nuclear Rocket Design," MR. GEORGE H. McLAFFERTY who wrote Chapter 9 "Gaseous Nuclear Rockets," DR. S. G. FORBES who wrote Chapter 10 "Electric and Ion Propul sion," DR. R. H. BODEN who wrote Chapter 11 "Ion Propulsion," DR.




Centrifugal Compressors


Book Description

A mechanical engineer with a Pennsylvania turbomachinery company, A ungier describes his own system and strategy for designing and analyzing centrifugal compressor aerodynamics. To address the novice as well as the experienced in the field, he presents the basic thermodynamic and fluid dynamic principles, empirical models, and key numerical methods that form the basis of his methods. His strategy, or design practice, he found harder to describe because it involves a process of reasoning rather than following an established set of principles. He recognizes that his is only one of many possible methods, but makes no effort to compare or contrast his with any other.




Advanced UAV Aerodynamics, Flight Stability and Control


Book Description

Comprehensively covers emerging aerospace technologies Advanced UAV aerodynamics, flight stability and control: Novel concepts, theory and applications presents emerging aerospace technologies in the rapidly growing field of unmanned aircraft engineering. Leading scientists, researchers and inventors describe the findings and innovations accomplished in current research programs and industry applications throughout the world. Topics included cover a wide range of new aerodynamics concepts and their applications for real world fixed-wing (airplanes), rotary wing (helicopter) and quad-rotor aircraft. The book begins with two introductory chapters that address fundamental principles of aerodynamics and flight stability and form a knowledge base for the student of Aerospace Engineering. The book then covers aerodynamics of fixed wing, rotary wing and hybrid unmanned aircraft, before introducing aspects of aircraft flight stability and control. Key features: Sound technical level and inclusion of high-quality experimental and numerical data. Direct application of the aerodynamic technologies and flight stability and control principles described in the book in the development of real-world novel unmanned aircraft concepts. Written by world-class academics, engineers, researchers and inventors from prestigious institutions and industry. The book provides up-to-date information in the field of Aerospace Engineering for university students and lecturers, aerodynamics researchers, aerospace engineers, aircraft designers and manufacturers.




Advanced Computational Fluid and Aerodynamics


Book Description

This book outlines the computational fluid dynamics evolution and gives an overview of the methods available to the engineer.




Turbine Aerodynamics


Book Description

This book provides a thorough description of actual, working aerodynamic design and analysis systems, for both axial-flow and radial-flow turbines. It describes the basic fluid dynamic and thermodynamic principles, empirical models and numerical methods used for the full range of procedures and analytical tools that an engineer needs for virtually any type of aerodynamic design or analysis activity for both types of turbine. The book includes sufficient detail for readers to implement all or part of the systems. The author provides practical and effective design strategies for applying both turbine types, which are illustrated by design examples. Comparisons with experimental results are included to demonstrate the prediction accuracy to be expected. This book is intended for practicing engineers concerned with the design and development of turbines and related machinery.