Advances in Carbon Management Technologies


Book Description

Advances in Carbon Management Technologies comprises 43 chapters contributed by experts from all over the world. Volume 1 of the book, containing 23 chapters, discusses the status of technologies capable of yielding substantial reduction of carbon dioxide emissions from major combustion sources. Such technologies include renewable energy sources that can replace fossil fuels and technologies to capture CO2 after fossil fuel combustion or directly from the atmosphere, with subsequent permanent long-term storage. The introductory chapter emphasizes the gravity of the issues related to greenhouse gas emissionglobal temperature correlation, the state of the art of key technologies and the necessary emission reductions needed to meet international warming targets. Section 1 deals with global challenges associated with key fossil fuel mitigation technologies, including removing CO2 from the atmosphere, and emission measurements. Section 2 presents technological choices for coal, petroleum, and natural gas for the purpose of reducing carbon footprints associated with the utilization of such fuels. Section 3 deals with promising contributions of alternatives to fossil fuels, such as hydropower, nuclear, solar photovoltaics, and wind. Chapter 19 of this book is freely available as a downloadable Open Access PDF at http://www.taylorfrancis.com under a Creative Commons Attribution-Non Commercial-No Derivatives (CC-BY-NC-ND) 4.0 license.




Advances in Carbon Management Technologies


Book Description

Volume 2 of Advances in Carbon Management Technologies has 21 chapters. It presents the introductory chapter again, for framing the challenges that confront the proposed solutions discussed in this volume. Section 4 presents various ways biomass and biomass wastes can be manipulated to provide a low-carbon footprint of the generation of power, heat and co-products, and of recovery and reuse of biomass wastes for beneficial purposes. Section 5 provides potential carbon management solutions in urban and manufacturing environments. This section also provides state-of the-art of battery technologies for the transportation sector. The chapters in section 6 deals with electricity and the grid, and how decarbonization can be practiced in the electricity sector. The overall topic of advances in carbon management is too broad to be covered in a book of this size. It was not intended to cover every possible aspect that is relevant to the topic. Attempts were made, however, to highlight the most important issues of decarbonization from technological viewpoints. Over the years carbon intensity of products and processes has decreased, but the proportion of energy derived from fossil fuels has been stubornly stuck at about 80%. This has occurred despite very rapid development of renewable fuels, because at the same time the use of fossil fuels has also increased. Thus, the challenges are truly daunting. It is hoped that the technology choices provided here will show the myriad ways that solutions will evolve. While policy decisions are the driving forces for technology development, the book was not designed to cover policy solutions.




Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology


Book Description

Carbon dioxide (CO2) capture and storage (CCS) is the one advanced technology that conventional power generation cannot do without. CCS technology reduces the carbon footprint of power plants by capturing, and storing the CO2 emissions from burning fossil-fuels and biomass. This volume provides a comprehensive reference on the state of the art research, development and demonstration of carbon storage and utilisation, covering all the storage options and their environmental impacts. It critically reviews geological, terrestrial and ocean sequestration, including enhanced oil and gas recovery, as well as other advanced concepts such as industrial utilisation, mineral carbonation, biofixation and photocatalytic reduction. Foreword written by Lord Oxburgh, Climate Science Peer Comprehensively examines the different methods of storage of carbon dioxide (CO2) and the various concepts for utilisation Reviews geological sequestration of CO2, including coverage of reservoir sealing and monitoring and modelling techniques used to verify geological sequestration of CO2




Advances in Carbon Management Technologies


Book Description

Advances in carbon Management Technologies comprises 43 chapters, in 2 volumes, contributed by experts from all over the world. Volume 1 of the book, containing 22 chapters, discusses the status of technologies capable of yielding substantial reduction of carbon dioxide emissions from major combustion sources. Such technologies include renewable energy sources that can replace fossil fuels, and technologies to capture CO2 after fossil fuel combustion or directly from the atmosphere, with subsequent permanent long-term storage. The introductory chapter emphasizes the gravity of the issues related to greenhouse gas emission-global temperature correlation, the state of the art of key technologies and the necessary emission reductions needed to meet international warming targets. Section 1 deals with global challenges associated with key fossil fuel mitigation technologies, including removing CO2 from the atmosphere, and emission measurements. Section 2 presents technological choices for coal, petroleum, and natural gas for the purpose of reducing carbon footprints associated with the utilization of such fuels. Section 3 deals with promising contributions of alternatives to fossil fuels, such as hydropower, nuclear, solar photovoltaics, and wind.




Advances in Carbon Capture and Utilization


Book Description

This book focuses on the recent trends in carbon management and up-to-date information on different carbon management strategies that lead to manage increasing concentration of atmospheric carbon dioxide. The growing evidence of climate change resulting from the continued increase of atmospheric carbon dioxide concentration has made it a high profile political–social and trade issue. The mean global average earth temperature rose by 0.6± 2°C during the second half of the century with the rate of 0.17°C/decade. As per GISS data in the year of 2017, it rose 0.9°C (1.62 °F) above the 1951-1980 mean global temperature. Recently World Meteorological Organization analyzes the past record temperature and found the past 10 years were the warmest years about 1.1°C above preindustrial level. Over the past decade, carbon management by various techniques has to come to fore as a way to manage carbon dioxide emissions contributing to climate change. The proposed book addresses the need for an understanding of sustainable carbon dioxide management technologies mainly focused on (a) minimizing carbon dioxide emission from sources; (b) maximizing environmentally sound recuse, reduce and recycling; (c)emerging technology toward carbon dioxide mitigation and d) converting carbon dioxide into valuable products form sustainable use. Other books related to carbon management attempt to cover the carbon capture and sequestration, carbon mineralization, utilization and storage but the topic of CO2 management strategies is not discussed in detail for sustainable development. Furthermore, this book also covers all physical, chemical and biological process for long-term capture, removal and sequestration of carbon dioxide from the atmosphere for sustainable management which is not described in other carbon management books. In order to meet CO2 emissions reduction target, a range of technological approaches, including development of clean fuels and clean coal technologies, adopting cleaner and more energy efficiency and conservation, developing renewable energy and implementing CCS technologies, will also be considered for sustainable future.




Negative Emissions Technologies and Reliable Sequestration


Book Description

To achieve goals for climate and economic growth, "negative emissions technologies" (NETs) that remove and sequester carbon dioxide from the air will need to play a significant role in mitigating climate change. Unlike carbon capture and storage technologies that remove carbon dioxide emissions directly from large point sources such as coal power plants, NETs remove carbon dioxide directly from the atmosphere or enhance natural carbon sinks. Storing the carbon dioxide from NETs has the same impact on the atmosphere and climate as simultaneously preventing an equal amount of carbon dioxide from being emitted. Recent analyses found that deploying NETs may be less expensive and less disruptive than reducing some emissions, such as a substantial portion of agricultural and land-use emissions and some transportation emissions. In 2015, the National Academies published Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration, which described and initially assessed NETs and sequestration technologies. This report acknowledged the relative paucity of research on NETs and recommended development of a research agenda that covers all aspects of NETs from fundamental science to full-scale deployment. To address this need, Negative Emissions Technologies and Reliable Sequestration: A Research Agenda assesses the benefits, risks, and "sustainable scale potential" for NETs and sequestration. This report also defines the essential components of a research and development program, including its estimated costs and potential impact.




Advances in Carbon Capture and Utilization


Book Description

This book focuses on the recent trends in carbon management and up-to-date information on different carbon management strategies that lead to manage increasing concentration of atmospheric carbon dioxide. The growing evidence of climate change resulting from the continued increase of atmospheric carbon dioxide concentration has made it a high profile political-social and trade issue. The mean global average earth temperature rose by 0.6± 2°C during the second half of the century with the rate of 0.17°C/decade. As per GISS data in the year of 2017, it rose 0.9°C (1.62 °F) above the 1951-1980 mean global temperature. Recently World Meteorological Organization analyzes the past record temperature and found the past 10 years were the warmest years about 1.1°C above preindustrial level. Over the past decade, carbon management by various techniques has to come to fore as a way to manage carbon dioxide emissions contributing to climate change. The proposed book addresses the need for an understanding of sustainable carbon dioxide management technologies mainly focused on (a) minimizing carbon dioxide emission from sources; (b) maximizing environmentally sound recuse, reduce and recycling; (c)emerging technology toward carbon dioxide mitigation and d) converting carbon dioxide into valuable products form sustainable use. Other books related to carbon management attempt to cover the carbon capture and sequestration, carbon mineralization, utilization and storage but the topic of CO2 management strategies is not discussed in detail for sustainable development. Furthermore, this book also covers all physical, chemical and biological process for long-term capture, removal and sequestration of carbon dioxide from the atmosphere for sustainable management which is not described in other carbon management books. In order to meet CO2 emissions reduction target, a range of technological approaches, including development of clean fuels and clean coal technologies, adopting cleaner and more energy efficiency and conservation, developing renewable energy and implementing CCS technologies, will also be considered for sustainable future.




Advances in Carbon Capture


Book Description

Advances in Carbon Capture reviews major implementations of CO2 capture, including absorption, adsorption, permeation and biological techniques. For each approach, key benefits and drawbacks of separation methods and technologies, perspectives on CO2 reuse and conversion, and pathways for future CO2 capture research are explored in depth. The work presents a comprehensive comparison of capture technologies. In addition, the alternatives for CO2 separation from various feeds are investigated based on process economics, flexibility, industrial aspects, purification level and environmental viewpoints. Explores key CO2 separation and compare technologies in terms of provable advantages and limitations Analyzes all critical CO2 capture methods in tandem with related technologies Introduces a panorama of various applications of CO2 capture




Carbon Management, Technologies, and Trends in Mediterranean Ecosystems


Book Description

This book pursues a unique approach, investigating both the ecological and socio-economic aspects of carbon management in Mediterranean ecosystems. All chapters are based on papers originally presented at the 1st Istanbul Carbon Summit, held at Istanbul Technical University, 2–4 April, 2014, and revised following a peer-review process. The book addresses the summit’s three main themes – carbon management, carbon technologies, and carbon trends – while also offering chapters on the economic aspects of carbon management and the ecological aspects of the carbon cycle. The chapters on economic aspects analyze the carbon trade and its institutional, political, and legislative structures in different Mediterranean nations, while those on ecological aspects review the discourse on and analysis of the related ecological factors and their feedback due to governance processes.




Carbon Capture and Storage


Book Description

This title includes a number of Open Access chapters.Carbon capture and storage (CCS) refers to a set of technologies and methods for the mitigation, remediation, and storage of industrial CO2 emissions, the most imminent and virile of the greenhouse gases (GHG). The book addresses the methods and technologies currently being applied, developed, an