Modelling of Cathodic Protection Systems


Book Description

Provides an introduction to the state-of-the-art in computer modelling of corrosion and related electrochemical processes. Aimed at corrosion engineers, physicists, and model developers, this book contains contributions from the researchers and developers of corrosion modelling tools and users who apply the technology in their industry.




Molecular Modeling of Corrosion Processes


Book Description

Presents opportunities for making significant improvements in preventing harmful effects that can be caused by corrosion Describes concepts of molecular modeling in the context of materials corrosion Includes recent examples of applications of molecular modeling to corrosion phenomena throughout the text Details how molecular modeling can give insights into the multitude of interconnected and complex processes that comprise the corrosion of metals Covered applications include diffusion and electron transfer at metal/electrolyte interfaces, Monte Carlo simulations of corrosion, corrosion inhibition, interrogating surface chemistry, and properties of passive films Presents current challenges and likely developments in this field for the future




Recent Developments in Analytical Techniques for Corrosion Research


Book Description

This book covers a wide range of advanced analytical tools, from electrochemical to in-situ/ex-situ material characterization techniques, as well as the modeling of corrosion systems to foster understanding and prediction. When used properly, these tools can enrich our understanding of material performance (metallic materials, coatings, inhibitors) in various environments/contexts (aqueous corrosion, high-temperature corrosion). The book encourages researchers to develop new corrosion-resistant materials and supports them in devising suitable asset integrity strategies. Offering a valuable resource for researchers, industry professionals, and graduate students alike, the book shows them how to apply these valuable analytical tools in their work. .




Corrosion Modelling with Cellular Automata


Book Description

Corrosion Modelling with Cellular Automata bridges the gap between finer scales based on atomic physics and the larger-scale based on physico-chemical properties of materials and their environments. The book describes the simulation and modeling of corrosion phenomena by cellular automata and underlines the collaborative and interdisciplinary relationships that underpin them. It explores the major achievements that have been performed to date, covers basic knowledge on cellular automata and corrosion phenomena, and includes sections on CA modeling of generalized and uniform corrosion in 2D and 3D under various conditions, including aqueous environments and high temperature processes. Finals sections present examples on the use of cellular automata for modeling localized corrosion as well as recent developments on intergranular corrosion. There is also a review on the use of CA for modeling pitting corrosion. - Focuses on the use of cellular automata for modeling corrosion - Covers recent advances in modeling generalized corrosion with cellular automata - Illustrates how cellular automata can be used to model localized corrosion (pitting and intergranular corrosion) - Spans various length scales from atomistic to mesoscale




Corrosion of Advanced Ceramics


Book Description

Corrosion behaviour is one of the most poorly understood characteristics of ceramics. A balanced mixture of scientists from material science, metallurgy, physics, chemistry and mineralogy sum up the state of the art of measurement and modelling and reveal future research directions. The book reviews the theory of corrosion of ceramics, including the diffusion of gases and the predictions of thermodynamics; it discusses critically the kinetic models and representation tools for layer growths and material destruction. Corrosion of nitrides, carbides and oxides by simple and complex gases (O2, H2O, SO2, halides) and melts (ionic and metallic) reveal current measurement and modelling methods, advanced experimental techniques, such as laser diagnostics, TV holography, Raman spectroscopy and NDE surface methods. Frontier areas (e.g. the modelling of porous materials corrosion and protection) are revealed. For scientists and engineers in materials science, dealing with ceramics and their application. A valuable source for research students, solid state physicists and physical chemists.




Aluminium Alloy Corrosion of Aircraft Structures


Book Description

Bringing together the latest research, this book applies new modeling techniques to corrosion issues in aircraft structures. It describes complex numerical models and simulations from the microscale to the macroscale for corrosion of the aluminum (Al) alloys that are typically used for aircraft construction, such as AA2024. The approach is also applicable to a range of other types of structures, such as automobiles and other forms of ground vehicles. The main motivation for developing the corrosion models and simulations was to make significant technical advances in the fields of aircraft design (using current and new materials), surface protection systems (against corrosion and degradation) and maintenance. The corrosion models address pitting and intergranular corrosion (microscale) of Al alloys, crevice corrosion in occluded areas, such as joints (mesoscale), galvanic corrosion of aircraft structural elements (macroscale), as well as, the effect of surface protection methods (anodization, corrosion inhibitor release, clad layer, etc.). The book describes the electrochemical basis for the models, their numerical implementation, and experimental validation and how the corrosion rate of the Al alloys at the various scales is influenced by its material properties and the surface protection methods. It will be of interest to scientists and engineers interested in corrosion modeling, aircraft corrosion, corrosion of other types of vehicle structures such as automobiles and ground vehicles, electrochemistry of corrosion, galvanic corrosion, crevice corrosion, and intergranular corrosion.--




Atmospheric Corrosion


Book Description

ATMOSPHERIC CORROSION Presents a comprehensive look at atmospheric corrosion, combining expertise in corrosion science and atmospheric chemistry Atmospheric corrosion has been a subject of engineering study, largely empirical, for nearly a century. Scientists came to the field rather later on and had considerable difficulty bringing their arsenal of tools to bear on the problem. Atmospheric corrosion was traditionally studied by specialists in corrosion having little knowledge of atmospheric chemistry, history, or prospects. Atmospheric Corrosion provides a combined approach bringing together experimental corrosion and atmospheric chemistry. The second edition expands on this approach by including environmental aspects of corrosion, atmospheric corrosion modeling, and international corrosion exposure programs. The combination of specialties provides a more comprehensive coverage of the topic. These scientific insights into the corrosion process and its amelioration are the focus of this book. Key topics include the following: Basic principles of atmospheric corrosion chemistry Corrosion mechanisms in controlled and uncontrolled environments Degradation of materials in architectural, transport, and structural applications; electronic devices; and cultural artifacts Protection of existing materials and choosing new ones that resist corrosion Prediction of how and where atmospheric corrosion may evolve in the future Complete with appendices discussing experimental techniques, computer models, and the degradation of specific metals, Atmospheric Corrosion, Second Edition continues to be an invaluable resource for corrosion scientists, corrosion engineers, conservators, environmental scientists, and anyone interested in the theory and application of this evolving field. The book concerns primarily the atmospheric corrosion of metals and is written at a level suitable for advanced undergraduates or beginning graduate students in any of the physical or engineering sciences.




Computational Modelling and Simulations for Designing of Corrosion Inhibitors


Book Description

Computational Modeling and Simulations for Designing of Corrosion Inhibitors: Fundamentals and Realistic Applications offers a collection of major advancements in the field of computational modeling for the design and testing of corrosion inhibition effectiveness of organic corrosion inhibitors. This guide presents the latest developments in molecular modeling of organic compounds using computational software, which has emerged as a powerful approach for theoretical determination of corrosion inhibition potentials of organic compounds. The book covers common techniques involved in theoretical studies of corrosion inhibition potentials, and mechanisms such as density functional theory, molecular dynamics, Monte Carlo simulations, artificial neural networks, and quantitative structure-activity relationship. - Covers basic, fundamental principles, advantages, parameters, and applications of computational and molecular modeling for designing potential corrosion inhibitors for metals and alloys - Describes advancements of computational modeling for the design of organic corrosion inhibitors and applications in electrochemical engineering and materials science - Focuses on the most advanced applications in industry-oriented fields, including current challenges - Includes websites of interest and information about the latest research




Research Opportunities in Corrosion Science and Engineering


Book Description

The field of corrosion science and engineering is on the threshold of important advances. Advances in lifetime prediction and technological solutions, as enabled by the convergence of experimental and computational length and timescales and powerful new modeling techniques, are allowing the development of rigorous, mechanistically based models from observations and physical laws. Despite considerable progress in the integration of materials by design into engineering development of products, corrosion considerations are typically missing from such constructs. Similarly, condition monitoring and remaining life prediction (prognosis) do not at present incorporate corrosion factors. Great opportunities exist to use the framework of these materials design and engineering tools to stimulate corrosion research and development to achieve quantitative life prediction, to incorporate state-of-the-art sensing approaches into experimentation and materials architectures, and to introduce environmental degradation factors into these capabilities. Research Opportunities in Corrosion Science and Engineering identifies grand challenges for the corrosion research community, highlights research opportunities in corrosion science and engineering, and posits a national strategy for corrosion research. It is a logical and necessary complement to the recently published book, Assessment of Corrosion Education, which emphasized that technical education must be supported by academic, industrial, and government research. Although the present report focuses on the government role, this emphasis does not diminish the role of industry or academia.