Advances In Data-based Approaches For Hydrologic Modeling And Forecasting


Book Description

This book comprehensively accounts the advances in data-based approaches for hydrologic modeling and forecasting. Eight major and most popular approaches are selected, with a chapter for each — stochastic methods, parameter estimation techniques, scaling and fractal methods, remote sensing, artificial neural networks, evolutionary computing, wavelets, and nonlinear dynamics and chaos methods. These approaches are chosen to address a wide range of hydrologic system characteristics, processes, and the associated problems. Each of these eight approaches includes a comprehensive review of the fundamental concepts, their applications in hydrology, and a discussion on potential future directions.




Advances in Data-based Approaches for Hydrologic Modeling and Forecasting


Book Description

This book comprehensively accounts the advances in data-based approaches for hydrologic modeling and forecasting. Eight major and most popular approaches are selected, with a chapter for each stochastic methods, parameter estimation techniques, scaling and fractal methods, remote sensing, artificial neural networks, evolutionary computing, wavelets, and nonlinear dynamics and chaos methods. These approaches are chosen to address a wide range of hydrologic system characteristics, processes, and the associated problems. Each of these eight approaches includes a comprehensive review of the fundamental concepts, their applications in hydrology, and a discussion on potential future directions.




Hydrological Data Driven Modelling


Book Description

This book explores a new realm in data-based modeling with applications to hydrology. Pursuing a case study approach, it presents a rigorous evaluation of state-of-the-art input selection methods on the basis of detailed and comprehensive experimentation and comparative studies that employ emerging hybrid techniques for modeling and analysis. Advanced computing offers a range of new options for hydrologic modeling with the help of mathematical and data-based approaches like wavelets, neural networks, fuzzy logic, and support vector machines. Recently machine learning/artificial intelligence techniques have come to be used for time series modeling. However, though initial studies have shown this approach to be effective, there are still concerns about their accuracy and ability to make predictions on a selected input space.




Advances in Streamflow Forecasting


Book Description

Advances in Streamflow Forecasting: From Traditional to Modern Approaches covers the three major data-driven approaches of streamflow forecasting including traditional approach of statistical and stochastic time-series modelling with their recent developments, stand-alone data-driven approach such as artificial intelligence techniques, and modern hybridized approach where data-driven models are combined with preprocessing methods to improve the forecast accuracy of streamflows and to reduce the forecast uncertainties. This book starts by providing the background information, overview, and advances made in streamflow forecasting. The overview portrays the progress made in the field of streamflow forecasting over the decades. Thereafter, chapters describe theoretical methodology of the different data-driven tools and techniques used for streamflow forecasting along with case studies from different parts of the world. Each chapter provides a flowchart explaining step-by-step methodology followed in applying the data-driven approach in streamflow forecasting. This book addresses challenges in forecasting streamflows by abridging the gaps between theory and practice through amalgamation of theoretical descriptions of the data-driven techniques and systematic demonstration of procedures used in applying the techniques. Language of this book is kept simple to make the readers understand easily about different techniques and make them capable enough to straightforward replicate the approach in other areas of their interest. This book will be vital for hydrologists when optimizing the water resources system, and to mitigate the impact of destructive natural disasters such as floods and droughts by implementing long-term planning (structural and nonstructural measures), and short-term emergency warning. Moreover, this book will guide the readers in choosing an appropriate technique for streamflow forecasting depending upon the given set of conditions. - Contributions from renowned researchers/experts of the subject from all over the world to provide the most authoritative outlook on streamflow forecasting - Provides an excellent overview and advances made in streamflow forecasting over the past more than five decades and covers both traditional and modern data-driven approaches in streamflow forecasting - Includes case studies along with detailed flowcharts demonstrating a systematic application of different data-driven models in streamflow forecasting, which helps understand the step-by-step procedures




Flood Forecasting Using Machine Learning Methods


Book Description

Nowadays, the degree and scale of flood hazards has been massively increasing as a result of the changing climate, and large-scale floods jeopardize lives and properties, causing great economic losses, in the inundation-prone areas of the world. Early flood warning systems are promising countermeasures against flood hazards and losses. A collaborative assessment according to multiple disciplines, comprising hydrology, remote sensing, and meteorology, of the magnitude and impacts of flood hazards on inundation areas significantly contributes to model the integrity and precision of flood forecasting. Methodologically oriented countermeasures against flood hazards may involve the forecasting of reservoir inflows, river flows, tropical cyclone tracks, and flooding at different lead times and/or scales. Analyses of impacts, risks, uncertainty, resilience, and scenarios coupled with policy-oriented suggestions will give information for flood hazard mitigation. Emerging advances in computing technologies coupled with big-data mining have boosted data-driven applications, among which Machine Learning technology, with its flexibility and scalability in pattern extraction, has modernized not only scientific thinking but also predictive applications. This book explores recent Machine Learning advances on flood forecast and management in a timely manner and presents interdisciplinary approaches to modelling the complexity of flood hazards-related issues, with contributions to integrative solutions from a local, regional or global perspective.




Chaos in Hydrology


Book Description

This authoritative book presents a comprehensive account of the essential roles of nonlinear dynamic and chaos theories in understanding, modeling, and forecasting hydrologic systems. This is done through a systematic presentation of: (1) information on the salient characteristics of hydrologic systems and on the existing theories for their modeling; (2) the fundamentals of nonlinear dynamic and chaos theories, methods for chaos identification and prediction, and associated issues; (3) a review of the applications of chaos theory in hydrology; and (4) the scope and potential directions for the future. This book bridges the divide between the deterministic and the stochastic schools in hydrology, and is well suited as a textbook for hydrology courses.




Distributed Hydrological Modelling


Book Description

It is the task of the engineer, as of any other professional person, to do everything that is reasonably possible to analyse the difficulties with which his or her client is confronted, and on this basis to design solutions and implement these in practice. The distributed hydrological model is, correspondingly, the means for doing everything that is reasonably possible - of mobilising as much data and testing it with as much knowledge as is economically feasible - for the purpose of analysing problems and of designing and implementing remedial measures in the case of difficulties arising within the hydrological cycle. Thus the aim of distributed hydrologic modelling is to make the fullest use of cartographic data, of geological data, of satellite data, of stream discharge measurements, of borehole data, of observations of crops and other vegetation, of historical records of floods and droughts, and indeed of everything else that has ever been recorded or remembered, and then to apply to this everything that is known about meteorology, plant physiology, soil physics, hydrogeology, sediment transport and everything else that is relevant within this context. Of course, no matter how much data we have and no matter how much we know, it will never be enough to treat some problems and some situations, but still we can aim in this way to do the best that we possibly can.




Advances in Nonlinear Geosciences


Book Description

Advances in Nonlinear Geosciences is a set of contributions from the participants of “30 Years of Nonlinear Dynamics” held July 3-8, 2016 in Rhodes, Greece as part of the Aegean Conferences, as well as from several other experts in the field who could not attend the meeting. The volume brings together up-to-date research from the atmospheric sciences, hydrology, geology, and other areas of geosciences and presents the new advances made in the last 10 years. Topics include chaos synchronization, topological data analysis, new insights on fractals, multifractals and stochasticity, climate dynamics, extreme events, complexity, and causality, among other topics.




Climate Change in Sustainable Water Resources Management


Book Description

This book provides a comprehensive approach to all aspects of water-related subjects affected by climate change that expand readers' attitudes toward future of the management strategies and improve management plans. It summarizes climate change scenarios, models, downscaling methods, and how to select the appropriate method. It also introduces practical steps in assessing climate change impacts on water issues through introducing hydrological models and climate change data applications in hydrologic analysis. The book caters to specialist readers who are interested in analyzing climate change effects on water resources, and related issues can gain a profound understanding of the practical concepts and step-by-step analysis, which is enriched with real case studies all around the world. Moreover, readers will be familiar with potential mitigation and adaptation measures in sustainable water engineering, considering the results of hydrologic modeling.




GeoComputation, Second Edition


Book Description

A revision of Openshaw and Abrahart’s seminal work, GeoComputation, Second Edition retains influences of its originators while also providing updated, state-of-the-art information on changes in the computational environment. In keeping with the field’s development, this new edition takes a broader view and provides comprehensive coverage across the field of GeoComputation. See What’s New in the Second Edition: Coverage of ubiquitous computing, the GeoWeb, reproducible research, open access, and agent-based modelling Expanded chapter on Genetic Programming and a separate chapter developed on Evolutionary Algorithms Ten chapters updated by the same or new authors and eight new chapters added to reflect state of the art Each chapter is a stand-alone entity that covers a particular topic. You can simply dip in and out or read it from cover to cover. The opening chapter by Stan Openshaw has been preserved, with only a limited number of minor essential modifications having been enacted. This is not just a matter of respect. Openshaw’s work is eloquent, prophetic, and his overall message remains largely unchanged. In contrast to other books on this subject, GeoComputation: Second Edition supplies a state-of-the-art review of all major areas in GeoComputation with chapters written especially for this book by invited specialists. This approach helps develop and expand a computational culture, one that can exploit the ever-increasing richness of modern geographical and geospatial datasets. It also supplies an instructional guide to be kept within easy reach for regular access and when need arises.