Partial Differential Equations of Mathematical Physics


Book Description

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.




Mathematical Physics with Partial Differential Equations


Book Description

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.




Equations of Mathematical Physics


Book Description

Mathematical physics plays an important role in the study of many physical processes — hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced undergraduate- or graduate-level text considers only those problems leading to partial differential equations. Contents: I. Classification of Partial Differential Equations II. Evaluations of the Hyperbolic Type III. Equations of the Parabolic Type IV. Equations of Elliptic Type V. Wave Propagation in Space VI. Heat Conduction in Space VII. Equations of Elliptic Type (Continuation) The authors — two well-known Russian mathematicians — have focused on typical physical processes and the principal types of equations dealing with them. Special attention is paid throughout to mathematical formulation, rigorous solutions, and physical interpretation of the results obtained. Carefully chosen problems designed to promote technical skills are contained in each chapter, along with extremely useful appendixes that supply applications of solution methods described in the main text. At the end of the book, a helpful supplement discusses special functions, including spherical and cylindrical functions.




Partial Differential Equations and Mathematical Physics


Book Description

The 17 invited research articles in this volume, all written by leading experts in their respective fields, are dedicated to the great French mathematician Jean Leray. A wide range of topics with significant new results---detailed proofs---are presented in the areas of partial differential equations, complex analysis, and mathematical physics. Key subjects are: * Treated from the mathematical physics viewpoint: nonlinear stability of an expanding universe, the compressible Euler equation, spin groups and the Leray--Maslov index, * Linked to the Cauchy problem: an intermediate case between effective hyperbolicity and the Levi condition, global Cauchy--Kowalewski theorem in some Gevrey classes, the analytic continuation of the solution, necessary conditions for hyperbolic systems, well posedness in the Gevrey class, uniformly diagonalizable systems and reduced dimension, and monodromy of ramified Cauchy problem. Additional articles examine results on: * Local solvability for a system of partial differential operators, * The hypoellipticity of second order operators, * Differential forms and Hodge theory on analytic spaces, * Subelliptic operators and sub- Riemannian geometry. Contributors: V. Ancona, R. Beals, A. Bove, R. Camales, Y. Choquet- Bruhat, F. Colombini, M. De Gosson, S. De Gosson, M. Di Flaviano, B. Gaveau, D. Gourdin, P. Greiner, Y. Hamada, K. Kajitani, M. Mechab, K. Mizohata, V. Moncrief, N. Nakazawa, T. Nishitani, Y. Ohya, T. Okaji, S. Ouchi, S. Spagnolo, J. Vaillant, C. Wagschal, S. Wakabayashi The book is suitable as a reference text for graduate students and active researchers.




Advances in Differential Equations and Mathematical Physics


Book Description

This volume presents the proceedings of the 9th International Conference on Differential Equations and Mathematical Physics. It contains 29 research and survey papers contributed by conference participants. The conference provided researchers a forum to present and discuss their recent results in a broad range of areas encompassing the theory of differential equations and their applications in mathematical physics. Papers in this volume represent some of the most interesting results and the major areas of research that were covered, including spectral theory with applications to non-relativistic and relativistic quantum mechanics, including time-dependent and random potential, resonances, many body systems, pseudodifferential operators and quantum dynamics, inverse spectral and scattering problems, the theory of linear and nonlinear partial differential equations with applications in fluid dynamics, conservation laws and numerical simulations, as well as equilibrium and nonequilibrium statistical mechanics. The volume is intended for graduate students and researchers interested in mathematical physics.




Advances in Differential Equations and Mathematical Physics


Book Description

The text offers a combination of certain emerging topics and important research advances in the area of differential equations. The topics range widely and include magnetic Schroedinger operators, the Boltzmann equations, nonlinear variational problems and noncommutative probability theory. The text is suitable for graduate and advanced graduate courses and seminars on the topic, as well as research mathematicians and physicists working in mathematical physics, applied mathematics, analysis and differential equations.




Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics


Book Description

Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights.




Recent Advances in Differential Equations and Control Theory


Book Description

This book collects the latest results and new trends in the application of mathematics to some problems in control theory, numerical simulation and differential equations. The work comprises the main results presented at a thematic minisymposium, part of the 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), held in Valencia, Spain, from 15 to 18 July 2019. The topics covered in the 6 peer-review contributions involve applications of numerical methods to real problems in oceanography and naval engineering, as well as relevant results on switching control techniques, which can have multiple applications in industrial complexes, electromechanical machines, biological systems, etc. Problems in control theory, as in most engineering problems, are modeled by differential equations, for which standard solving procedures may be insufficient. The book also includes recent geometric and analytical methods for the search of exact solutions for differential equations, which serve as essential tools for analyzing problems in many scientific disciplines.




Mathematical Methods in Physics


Book Description

This book is a text on partial differential equations (PDEs) of mathematical physics and boundary value problems, trigonometric Fourier series, and special functions. This is the core content of many courses in the fields of engineering, physics, mathematics, and applied mathematics. The accompanying software provides a laboratory environment that




Advanced Methods of Mathematical Physics


Book Description

In an introductory style with many examples, Advanced Methods of Mathematical Physics presents some of the concepts, methods, and tools that form the core of mathematical physics. The material covers two main broad categories of topics: 1) abstract topics, such as groups, topology, integral equations, and stochasticity, and 2) the methods of nonlinear dynamics.