Advances in Electrical Engineering and Computational Science


Book Description

Advances in Electrical Engineering and Computational Science contains sixty-one revised and extended research articles written by prominent researchers participating in the conference. Topics covered include Control Engineering, Network Management, Wireless Networks, Biotechnology, Signal Processing, Computational Intelligence, Computational Statistics, Internet Computing, High Performance Computing, and industrial applications. Advances in Electrical Engineering and Computational Science will offer the state of art of tremendous advances in electrical engineering and computational science and also serve as an excellent reference work for researchers and graduate students working with/on electrical engineering and computational science.




Computational Methodologies for Electrical and Electronics Engineers


Book Description

Artificial intelligence has been applied to many areas of science and technology, including the power and energy sector. Renewable energy in particular has experienced the tremendous positive impact of these developments. With the recent evolution of smart energy technologies, engineers and scientists working in this sector need an exhaustive source of current knowledge to effectively cater to the energy needs of citizens of developing countries. Computational Methodologies for Electrical and Electronics Engineers is a collection of innovative research that provides a complete insight and overview of the application of intelligent computational techniques in power and energy. Featuring research on a wide range of topics such as artificial neural networks, smart grids, and soft computing, this book is ideally designed for programmers, engineers, technicians, ecologists, entrepreneurs, researchers, academicians, and students.




Mathematics for Electrical Engineering and Computing


Book Description

Mathematics for Electrical Engineering and Computing embraces many applications of modern mathematics, such as Boolean Algebra and Sets and Functions, and also teaches both discrete and continuous systems - particularly vital for Digital Signal Processing (DSP). In addition, as most modern engineers are required to study software, material suitable for Software Engineering - set theory, predicate and prepositional calculus, language and graph theory - is fully integrated into the book.Excessive technical detail and language are avoided, recognising that the real requirement for practising engineers is the need to understand the applications of mathematics in everyday engineering contexts. Emphasis is given to an appreciation of the fundamental concepts behind the mathematics, for problem solving and undertaking critical analysis of results, whether using a calculator or a computer.The text is backed up by numerous exercises and worked examples throughout, firmly rooted in engineering practice, ensuring that all mathematical theory introduced is directly relevant to real-world engineering. The book includes introductions to advanced topics such as Fourier analysis, vector calculus and random processes, also making this a suitable introductory text for second year undergraduates of electrical, electronic and computer engineering, undertaking engineering mathematics courses.Dr Attenborough is a former Senior Lecturer in the School of Electrical, Electronic and Information Engineering at South Bank University. She is currently Technical Director of The Webbery - Internet development company, Co. Donegal, Ireland. - Fundamental principles of mathematics introduced and applied in engineering practice, reinforced through over 300 examples directly relevant to real-world engineering




Computational Science and Technology


Book Description

This book gathers the proceedings of the Seventh International Conference on Computational Science and Technology 2020 (ICCST 2020), held in Pattaya, Thailand, on 29–30 August 2020. The respective contributions offer practitioners and researchers a range of new computational techniques and solutions, identify emerging issues, and outline future research directions, while also showing them how to apply the latest large-scale, high-performance computational methods.







Advances in Electrical Engineering and Computational Science


Book Description

Advances in Electrical Engineering and Computational Science contains sixty-one revised and extended research articles written by prominent researchers participating in the conference. Topics covered include Control Engineering, Network Management, Wireless Networks, Biotechnology, Signal Processing, Computational Intelligence, Computational Statistics, Internet Computing, High Performance Computing, and industrial applications. Advances in Electrical Engineering and Computational Science will offer the state of art of tremendous advances in electrical engineering and computational science and also serve as an excellent reference work for researchers and graduate students working with/on electrical engineering and computational science.




Advanced Mathematics for Electrical and Computer Engineers


Book Description

Advanced Mathematics for Electrical and Computer Engineers, by Randall L. Musselman, applies comprehensive math topics specifically to electrical and computer-engineering applications. These topics include:?Discrete mathothe mathematics of computation?Probability and random variablesofundamental to communication theory and solid-state devices?Ordinary differential equationsothe mathematics of circuit analysis?Laplace transforms othat makes the math of circuit analysis much more manageable?Fourier series and Fourier transformsothe mathematical backbone of signal analysis?Partial differential equationsothe math description of waves and boundary value problems?Linear algebraothe mathematical language of modern robotics?Vector calculusofundamental to electromagnetism and radio-wave propagationThis book explores each of these topics their own chapters, employing electrical and computer-engineering examples as applications.




Handbook of Research on Computational Science and Engineering: Theory and Practice


Book Description

By using computer simulations in research and development, computational science and engineering (CSE) allows empirical inquiry where traditional experimentation and methods of inquiry are difficult, inefficient, or prohibitively expensive. The Handbook of Research on Computational Science and Engineering: Theory and Practice is a reference for interested researchers and decision-makers who want a timely introduction to the possibilities in CSE to advance their ongoing research and applications or to discover new resources and cutting edge developments. Rather than reporting results obtained using CSE models, this comprehensive survey captures the architecture of the cross-disciplinary field, explores the long term implications of technology choices, alerts readers to the hurdles facing CSE, and identifies trends in future development.




Computational Problems in Science and Engineering


Book Description

This book provides readers with modern computational techniques for solving variety of problems from electrical, mechanical, civil and chemical engineering. Mathematical methods are presented in a unified manner, so they can be applied consistently to problems in applied electromagnetics, strength of materials, fluid mechanics, heat and mass transfer, environmental engineering, biomedical engineering, signal processing, automatic control and more.




Scientific Computing in Electrical Engineering


Book Description

This collection of selected papers presented at the 12th International Conference on Scientific Computing in Electrical Engineering, SCEE 2018, held in Taormina, Sicily, Italy, in September 2018, showcases the state of the art in SCEE. The aim of the SCEE 2018 conference was to bring together scientists from academia and industry, mathematicians, electrical engineers, computer scientists, and physicists, and to promote intensive discussions on industrially relevant mathematical problems, with an emphasis on the modeling and numerical simulation of electronic circuits and of electromagnetic fields. This extensive reference work is divided into five parts: Computational Electromagnetics, Device Modeling and Simulation, Circuit Simulation, Mathematical and Computational Methods, Model Order Reduction. Each part starts with a general introduction, followed by the respective contributions. The book will appeal to mathematicians and electrical engineers. Further, it introduces algorithm and program developers to recent advances in the other fields, while industry experts will be introduced to new programming tools and mathematical methods.