Advances in Face Detection and Facial Image Analysis


Book Description

This book presents the state-of-the-art in face detection and analysis. It outlines new research directions, including in particular psychology-based facial dynamics recognition, aimed at various applications such as behavior analysis, deception detection, and diagnosis of various psychological disorders. Topics of interest include face and facial landmark detection, face recognition, facial expression and emotion analysis, facial dynamics analysis, face classification, identification, and clustering, and gaze direction and head pose estimation, as well as applications of face analysis.




Advances in Face Image Analysis


Book Description

Advances in Face Image Analysis: Theory and applications describes several approaches to facial image analysis and recognition. Eleven chapters cover advances in computer vision and pattern recognition methods used to analyze facial data. The topics addressed in this book include automatic face detection, 3D face model fitting, robust face recognition, facial expression recognition, face image data embedding, model-less 3D face pose estimation and image-based age estimation. The chapters are also written by experts from a different research groups. Readers will, therefore, have access to contemporary knowledge on facial recognition with some diverse perspectives offered for individual techniques. The book is a useful resource for a wide audience such as i) researchers and professionals working in the field of face image analysis, ii) the entire pattern recognition community interested in processing and extracting features from raw face images, and iii) technical experts as well as postgraduate computer science students interested in cutting edge concepts of facial image recognition.




Face Image Analysis by Unsupervised Learning


Book Description

Face Image Analysis by Unsupervised Learning explores adaptive approaches to image analysis. It draws upon principles of unsupervised learning and information theory to adapt processing to the immediate task environment. In contrast to more traditional approaches to image analysis in which relevant structure is determined in advance and extracted using hand-engineered techniques, Face Image Analysis by Unsupervised Learning explores methods that have roots in biological vision and/or learn about the image structure directly from the image ensemble. Particular attention is paid to unsupervised learning techniques for encoding the statistical dependencies in the image ensemble. The first part of this volume reviews unsupervised learning, information theory, independent component analysis, and their relation to biological vision. Next, a face image representation using independent component analysis (ICA) is developed, which is an unsupervised learning technique based on optimal information transfer between neurons. The ICA representation is compared to a number of other face representations including eigenfaces and Gabor wavelets on tasks of identity recognition and expression analysis. Finally, methods for learning features that are robust to changes in viewpoint and lighting are presented. These studies provide evidence that encoding input dependencies through unsupervised learning is an effective strategy for face recognition. Face Image Analysis by Unsupervised Learning is suitable as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry.




Advances in Face Image Analysis: Techniques and Technologies


Book Description

More than 30 leading experts from around the world provide comprehensive coverage of various branches of face image analysis, making this text a valuable asset for students, researchers, and practitioners engaged in the study, research, and development of face image analysis techniques.




Face Processing: Advanced Modeling and Methods


Book Description

Major strides have been made in face processing in the last ten years due to the fast growing need for security in various locations around the globe. A human eye can discern the details of a specific face with relative ease. It is this level of detail that researchers are striving to create with ever evolving computer technologies that will become our perfect mechanical eyes. The difficulty that confronts researchers stems from turning a 3D object into a 2D image. That subject is covered in depth from several different perspectives in this volume. Face Processing: Advanced Modeling and Methods begins with a comprehensive introductory chapter for those who are new to the field. A compendium of articles follows that is divided into three sections. The first covers basic aspects of face processing from human to computer. The second deals with face modeling from computational and physiological points of view. The third tackles the advanced methods, which include illumination, pose, expression, and more. Editors Zhao and Chellappa have compiled a concise and necessary text for industrial research scientists, students, and professionals working in the area of image and signal processing. - Contributions from over 35 leading experts in face detection, recognition and image processing - Over 150 informative images with 16 images in FULL COLOR illustrate and offer insight into the most up-to-date advanced face processing methods and techniques - Extensive detail makes this a need-to-own book for all involved with image and signal processing




Hyperspectral Image Analysis


Book Description

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.




Applied Pattern Recognition


Book Description

A sharp increase in the computing power of modern computers has triggered the development of powerful algorithms that can analyze complex patterns in large amounts of data within a short time period. Consequently, it has become possible to apply pattern recognition techniques to new tasks. The main goal of this book is to cover some of the latest application domains of pattern recognition while presenting novel techniques that have been developed or customized in those domains.




Advances in Biometric Person Authentication


Book Description

This book constitutes the refereed proceedings of the International Workshop on Biometric Recognition Systems, IWBRS 2005, held in Beijing, China in October 2005 within the scope of ICCV 2005, the International Conference on Computer Vision. This workshop combines the annual Chinese Conference on Biometric Recognition (Sinobiometrics 2005). The 32 revised full papers were carefully reviewed and selected from 130 submissions. The papers address the problems of automatic and reliable authentication of individuals in face, iris, fingerprint, palmprint, speaker, writing and other biometrics, and contribute new ideas to research and development of reliable and practical solutions for biometric authentication.




The Oxford Handbook of Affective Computing


Book Description

"The Oxford Handbook of Affective Computing is a definitive reference in the burgeoning field of affective computing (AC), a multidisciplinary field encompassing computer science, engineering, psychology, education, neuroscience, and other disciplines. AC research explores how affective factors influence interactions between humans and technology, how affect sensing and affect generation techniques can inform our understanding of human affect, and on the design, implementation, and evaluation of systems involving affect at their core. The volume features 41 chapters and is divided into five sections: history and theory, detection, generation, methodologies, and applications. Section 1 begins with the making of AC and a historical review of the science of emotion. The following chapters discuss the theoretical underpinnings of AC from an interdisciplinary viewpoint. Section 2 examines affect detection or recognition, a commonly investigated area. Section 3 focuses on aspects of affect generation, including the synthesis of emotion and its expression via facial features, speech, postures, and gestures. Cultural issues are also discussed. Section 4 focuses on methodological issues in AC research, including data collection techniques, multimodal affect databases, formats for the representation of emotion, crowdsourcing techniques, machine learning approaches, affect elicitation techniques, useful AC tools, and ethical issues. Finally, Section 5 highlights applications of AC in such domains as formal and informal learning, games, robotics, virtual reality, autism research, health care, cyberpsychology, music, deception, reflective writing, and cyberpsychology. This compendium will prove suitable for use as a textbook and serve as a valuable resource for everyone with an interest in AC."--




Markov Random Field Modeling in Image Analysis


Book Description

Markov random field (MRF) theory provides a basis for modeling contextual constraints in visual processing and interpretation. It enables us to develop optimal vision algorithms systematically when used with optimization principles. This book presents a comprehensive study on the use of MRFs for solving computer vision problems. Various vision models are presented in a unified framework, including image restoration and reconstruction, edge and region segmentation, texture, stereo and motion, object matching and recognition, and pose estimation. This third edition includes the most recent advances and has new and expanded sections on topics such as: Bayesian Network; Discriminative Random Fields; Strong Random Fields; Spatial-Temporal Models; Learning MRF for Classification. This book is an excellent reference for researchers working in computer vision, image processing, statistical pattern recognition and applications of MRFs. It is also suitable as a text for advanced courses in these areas.