Advances in Fluid Mechanics XII


Book Description

Containing papers from the 12th International Conference on Advances in Fluid Mechanics, this book covers a wide range of topics including basic formulations and their computer modelling as well as the relationship between experimental and analytical results. The emphasis is on new applications and research currently in progress. The field of fluid mechanics is vast and has numerous and diverse applications. The contained research works discuss new studies in fluid mechanics and present the latest applications in the field. A wide range of topics are covered including, Computational methods; Boundary elements and other mesh reduction methods; Fluid structure interaction; Cooling of electronic devices; Environmental fluid dynamics; Industrial applications; Energy systems; Nano and micro fluids; Turbulent and complex flows; Jets; Droplet and spray dynamics; Bubble dynamics; Multiphase fluid flow; Pumping and fluid transportation; Experimental measurements; Rheology; Chemical reaction flow; Hydroelectromagnetic flow; High speed flow; Wave theory; Energy conversion systems.




Advances in Fluid Mechanics XIII


Book Description

The field of fluid mechanics is vast and has numerous and diverse applications. As such, it covers a wide range of topics including basic formulations and their computer modelling as well as the relationship between experimental and analytical results. The 13th International Conference on Advances in Fluid Mechanics, from which this volume originates, had an emphasis on new applications and research currently in progress. The papers included cover such topics as Boundary elements and other mesh reduction methods; Fluid structure interaction; Multiphase heat transfer; Environmental fluid dynamics; Energy harvesting; Nano and micro fluids; Complex flows; Jets; Droplet and spray dynamics; Bubble dynamics; Multiphase fluid flow; Pumping and fluid transportation; Complex and non-Newtonian fluids; Chemical reaction flow; Hydroelectromagnetic flow; hypersonic flows; Wave theory; Acoustics of noise propagation; Nanotechnology applications in fluids and heat transfer; Bluff body aerodynamics; Aerodynamic shape optimization.




New Results in Numerical and Experimental Fluid Mechanics XII


Book Description

This book gathers contributions to the 21st biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. The book’s primary emphasis is on aerodynamic research in aeronautics and astronautics, and in ground transportation and energy as well.




Recent Numerical Advances in Fluid Mechanics


Book Description

In recent decades, the field of computational fluid dynamics has made significant advances in enabling advanced computing architectures to understand many phenomena in biological, geophysical, and engineering fluid flows. Almost all research areas in fluids use numerical methods at various complexities: from molecular to continuum descriptions; from laminar to turbulent regimes; from low speed to hypersonic, from stencil-based computations to meshless approaches; from local basis functions to global expansions, as well as from first-order approximation to high-order with spectral accuracy. Many successful efforts have been put forth in dynamic adaptation strategies, e.g., adaptive mesh refinement and multiresolution representation approaches. Furthermore, with recent advances in artificial intelligence and heterogeneous computing, the broader fluids community has gained the momentum to revisit and investigate such practices. This Special Issue, containing a collection of 13 papers, brings together researchers to address recent numerical advances in fluid mechanics.




Advances in Fluid Mechanics VI


Book Description

Covering the latest developments in this field, this text features edited versions of papers presented at the Sixth International Conference on Advances in Fluid Mechanics.




Engineering Fluid Mechanics


Book Description

Engineering Fluid Mechanics guides students from theory to application, emphasizing critical thinking, problem solving, estimation, and other vital engineering skills. Clear, accessible writing puts the focus on essential concepts, while abundant illustrations, charts, diagrams, and examples illustrate complex topics and highlight the physical reality of fluid dynamics applications. Over 1,000 chapter problems provide the “deliberate practice”—with feedback—that leads to material mastery, and discussion of real-world applications provides a frame of reference that enhances student comprehension. The study of fluid mechanics pulls from chemistry, physics, statics, and calculus to describe the behavior of liquid matter; as a strong foundation in these concepts is essential across a variety of engineering fields, this text likewise pulls from civil engineering, mechanical engineering, chemical engineering, and more to provide a broadly relevant, immediately practicable knowledge base. Written by a team of educators who are also practicing engineers, this book merges effective pedagogy with professional perspective to help today’s students become tomorrow’s skillful engineers.




Advances in Fluid Mechanics IV


Book Description

Featuring the latest developments in fluid mechanics, this book contains edited versions of the papers presented at the fourth international conference on this subject. A wide range of topics are covered by contributors from all round the world, while particular emphasis is placed on new applications and research currently in progress.




Advances in Turbulence


Book Description

This book presents selected papers from the 12th edition of the Spring School of Transition and Turbulence which took place in 2020. The papers cover applications on a number of industrial processes, such as the automotive, aeronautics, chemicals, oil and gas, food, nanotechnology, and others. The readers find out research and applied works on the topics of aerodynamics, computational fluid dynamics, instrumentation and experiments, multi-phase flows, and theoretical and analytical modeling.




Advances in Fluid Dynamics with emphasis on Multiphase and Complex Flow


Book Description

The field of fluid mechanics is vast and has numerous and diverse applications. Presented papers from the 11th International Conference on Advances in Fluid Dynamics with emphasis on Multiphase and Complex Flow are contained in this book and cover a wide range of topics, including basic formulations and their computer modelling as well as the relationship between experimental and analytical results. Innovation in fluid-structure approaches including emerging applications as energy harvesting systems, studies of turbulent flows at high Reynold number, or subsonic and hypersonic flows are also among the topics covered. The emphasis placed on multiphase flow in the included research works is due to the fact that fluid dynamics processes in nature are predominantly multi-phased, i.e. involving more than one phase of a component such as liquid, gas or plasma. The range of related problems of interest is vast: astrophysics, biology, geophysics, atmospheric processes, and a large variety of engineering applications. Multiphase fluid dynamics are generating a great deal of interest, leading to many notable advances in experimental, analytical, and numerical studies in this area. While progress is continuing in all three categories, advances in numerical solutions are likely the most conspicuous, owing to the continuing improvements in computer power and the software tools available to researchers. Progress in numerical methods has not only allowed for the solution of many practical problems but also helped to improve our understanding of the physics involved. Many unresolved issues are inherent in the very definition of multiphase flow, where it is necessary to consider coupled processes on multiple scales, as well as the interplay of a wide variety of relevant physical phenomena.




Advances in Turbulence XII


Book Description

This volume comprises the communications presented at the EUROMECH European Turbulence Conference ETC12, held in Marburg in September 2009. The topics covered by the meeting include: Acoustics of turbulent flows, Atmospheric turbulence, Control of turbulent flows, Geophysical and astrophysical turbulence, Instability and transition, Intermittency and scaling, Large eddy simulation and related techniques, Lagrangian aspects, MHD turbulence, Reacting and compressible turbulence, Transport and mixing, Turbulence in multiphase and non-Newtonian flows, Vortex dynamics and structure, formation, Wall bounded flows.