Paper


Book Description




ASME Technical Papers


Book Description







Combustion in Advanced Gas Turbine Systems


Book Description

Cranfield International Symposium Series, Volume 10: Combustion in Advanced Gas Turbine Systems covers the proceedings of an International Propulsion Symposium, held at the College of Aeronautics in Cranfield in April 1967. The book focuses on the processes, methodologies, reactions, and transformations involved in chemical combustion. The selection first takes a look at the design considerations in advanced gas turbine combustion chambers, combustion in industrial gas turbines, and combustion development on the Rolls-Royce Spey engine. Discussions focus on mechanical condition, carbon-formation and exhaust smoke, system requirements, fuel oil ash deposition and corrosion, combustion-system design, performance requirements, types of primary zone, fuel injection, and combustion chamber types. The text then examines subsonic flow flameholder studies using a low pressure simulation technique; stabilization of hydrogen diffusion flames by flame-holders in supersonic flow at low stagnation temperatures; and augmentation systems for turbofan engines. The book takes a look at a consideration of the possible use of refractory ceramic materials for advanced combustion chamber design; cooling of flame tubes by steam injection; and combustion problems in the massive steam injection gas turbine. The selection is a valuable source of information for researchers interested in the process of combustion in advanced gas turbine systems.




Advanced Technologies for Gas Turbines


Book Description

Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




Fossil Energy Update


Book Description